Archive

Posts Tagged ‘memory research’

Discovery of Gatekeeper Nerve Cells Explains the Effect of Nicotine on Learning and Memory

December 16, 2012 Leave a comment

Swedish researchers at Uppsala University have, together with Brazilian collaborators, discovered a new group of nerve cells that regulate processes of learning and memory. These cells act as gatekeepers and carry a receptor for nicotine, which can help explain our ability to remember and sort information.

The discovery of the gatekeeper cells, which are part of a memory network together with several other nerve cells in the hippocampus, reveal new fundamental knowledge about learning and memory. The study is published today in Nature Neuroscience.

The hippocampus is an area of the brain that is important for consolidation of information into memories and helps us to learn new things. The newly discovered gatekeeper nerve cells, also called OLM-alpha2 cells, provide an explanation to how the flow of information is controlled in the hippocampus. Read more…

Researchers Show that Memories Reside in Specific Brain Cells

December 16, 2012 Leave a comment

Simply activating a tiny number of neurons can conjure an entire memory.

Our fond or fearful memories — that first kiss or a bump in the night — leave memory traces that we may conjure up in the remembrance of things past, complete with time, place and all the sensations of the experience. Neuroscientists call these traces memory engrams.

But are engrams conceptual, or are they a physical network of neurons in the brain? In a new MIT study, researchers used optogenetics to show that memories really do reside in very specific brain cells, and that simply activating a tiny fraction of brain cells can recall an entire memory — explaining, for example, how Marcel Proust could recapitulate his childhood from the aroma of a once-beloved madeleine cookie.

“We demonstrate that behavior based on high-level cognition, such as the expression of a specific memory, can be generated in a mammal by highly specific physical activation of a specific small subpopulation of brain cells, in this case by light,” says Susumu Tonegawa, the Picower Professor of Biology and Neuroscience at MIT and lead author of the study reported online today in the journal Nature. “This is the rigorously designed 21st-century test of Canadian neurosurgeon Wilder Penfield’s early-1900s accidental observation suggesting that mind is based on matter.” Read more…

Neural Networks Forget Information Quickly

December 16, 2012 Leave a comment

Researchers have figured out the speed that neural networks in the cerebral cortex can delete sensory information is a bit of information per active neuron per second. The activity patterns of the neural network models are deleted nearly as soon as they are passed on from sensory neurons.

The scientists used neural network models based on real neuronal properties for the first time for these calculations. Neuronal spike properties were figured into the models which also helped show that the cerebral cortex processes were extremely chaotic.

Neural networks and this type of research in general are all helping researchers better understand learning and memory processes. With better knowledge about learning and memory, researchers can work toward treatments for Alzheimer’s disease, dementia, learning disabilities, PTSD related memory loss and many other problems.

More details are provided in the release below. Read more…

Memories May Skew Visual Perception

December 16, 2012 3 comments

Taking a trip down memory lane while you are driving could land you in a roadside ditch, new research indicates.

Vanderbilt University psychologists have found that our visual perception can be contaminated by memories of what we have recently seen, impairing our ability to properly understand and act on what we are currently seeing.

“This study shows that holding the memory of a visual event in our mind for a short period of time can ‘contaminate’ visual perception during the time that we’re remembering,” Randolph Blake, study co-author and Centennial Professor of Psychology, said.

“Our study represents the first conclusive evidence for such contamination, and the results strongly suggest that remembering and perceiving engage at least some of the same brain areas.” Read more…

Researchers Partially Control a Memory

March 28, 2012 Leave a comment

Scripps Research Institute Team Wrests Partial Control of a Memory

The work advances understanding of how memories form and offers new insight into disorders such as schizophrenia and post traumatic stress disorder.

Scripps Research Institute scientists and their colleagues have successfully harnessed neurons in mouse brains, allowing them to at least partially control a specific memory. Though just an initial step, the researchers hope such work will eventually lead to better understanding of how memories form in the brain, and possibly even to ways to weaken harmful thoughts for those with conditions such as schizophrenia and post traumatic stress disorder.

The results are reported in the March 23, 2012 issue of the journal Science.

Researchers have known for decades that stimulating various regions of the brain can trigger behaviors and even memories. But understanding the way these brain functions develop and occur normally—effectively how we become who we are—has been a much more complex goal.

“The question we’re ultimately interested in is: How does the activity of the brain represent the world?” said Scripps Research neuroscientist Mark Mayford, who led the new study. “Understanding all this will help us understand what goes wrong in situations where you have inappropriate perceptions. It can also tell us where the brain changes with learning.”

On-Off Switches and a Hybrid Memory

As a first step toward that end, the team set out to manipulate specific memories by inserting two genes into mice. One gene produces receptors that researchers can chemically trigger to activate a neuron. They tied this gene to a natural gene that turns on only in active neurons, such as those involved in a particular memory as it forms, or as the memory is recalled. In other words, this technique allows the researchers to install on-off switches on only the neurons involved in the formation of specific memories.

For the study’s main experiment, the team triggered the “on” switch in neurons active as mice were learning about a new environment, Box A, with distinct colors, smells and textures.

Next the team placed the mice in a second distinct environment—Box B—after giving them the chemical that would turn on the neurons associated with the memory for Box A. The researchers found the mice behaved as if they were forming a sort of hybrid memory that was part Box A and part Box B. The chemical switch needed to be turned on while the mice were in Box B for them to demonstrate signs of recognition. Alone neither being in Box B nor the chemical switch was effective in producing memory recall.

“We know from studies in both animals and humans that memories are not formed in isolation but are built up over years incorporating previously learned information,” Mayford said. “This study suggests that one way the brain performs this feat is to use the activity pattern of nerve cells from old memories and merge this with the activity produced during a new learning session.”

Future Manipulation of the Past

The team is now making progress toward more precise control that will allow the scientists to turn one memory on and off at will so effectively that a mouse will in fact perceive itself to be in Box A when it’s in Box B.

Once the processes are better understood, Mayford has ideas about how researchers might eventually target the perception process through drug treatment to deal with certain mental diseases such as schizophrenia and post traumatic stress disorder. With such problems, patients’ brains are producing false perceptions or disabling fears. But drug treatments might target the neurons involved when a patient thinks about such fear, to turn off the neurons involved and interfere with the disruptive thought patterns.

Notes about this memory research article

In addition to Mayford, other authors of the paper, “Generation of a Synthetic Memory Trace,” are Aleena Garner, Sang Youl Hwang, and Karsten Baumgaertel from Scripps Research, David Rowland and Cliff Kentros from the University of Oregon, Eugene, and Bryan Roth from the University of North Carolina (UNC), Chapel Hill.

This work is supported by the National Institute of Mental Health, the National Institute on Drug Abuse, the California Institute for Regenerative Medicine, and the Michael Hooker Distinguished Chair in Pharmacology at UNC.

Source:

Source: The Scripps Research Institute press release

Original Research: Abstract for “Generation of a Synthetic Memory Trace” by Aleena R. Garner, David C. Rowland, Sang Youl Hwang, Karsten Baumgaertel, Bryan L. Roth, Cliff Kentros & Mark Mayford in Science