Archive

Archive for the ‘Virology’ Category

Nanotechnology against malaria parasites

December 13, 2014 Leave a comment

After maturation, malaria parasites (yellow) are leaving an infected red blood cell and are efficiently blocked by nanomimics (blue). (Fig: Modified with permission from ACS)

Malaria parasites invade human red blood cells, they then disrupt them and infect others. Researchers at the University of Basel and the Swiss Tropical and Public Health Institute have now developed so-called nanomimics of host cell membranes that trick the parasites. This could lead to novel treatment and vaccination strategies in the fight against malaria and other infectious diseases. Their research results have been published in the scientific journal ACS Nano.

For many infectious diseases no vaccine currently exists. In addition, resistance against currently used drugs is spreading rapidly. To fight these diseases, innovative strategies using new mechanisms of action are needed. The  Plasmodium falciparum that is transmitted by the Anopheles mosquito is such an example. Malaria is still responsible for more than 600,000 deaths annually, especially affecting children in Africa (WHO, 2012).

Artificial bubbles with receptors

Malaria parasites normally invade human red  in which they hide and reproduce. They then make the host cell burst and infect new cells. Using nanomimics, this cycle can now be effectively disrupted: The egressing parasites now bind to the nanomimics instead of the red blood cells.

Researchers of groups led by Prof. Wolfgang Meier, Prof. Cornelia Palivan (both at the University of Basel) and Prof. Hans-Peter Beck (Swiss TPH) have successfully designed and tested host cell nanomimics. For this, they developed a simple procedure to produce polymer vesicles – small artificial bubbles – with host cell receptors on the surface. The preparation of such polymer vesicles with water-soluble host receptors was done by using a mixture of two different block copolymers. In aqueous solution, the nanomimics spontaneously form by self-assembly.

Blocking parasites efficiently

Usually, the malaria parasites destroy their host cells after 48 hours and then infect new . At this stage, they have to bind specific host cell receptors. Nanomimics are now able to bind the egressing parasites, thus blocking the invasion of new cells. The parasites are no longer able to invade host cells, however, they are fully accessible to the immune system.

The researchers examined the interaction of nanomimics with malaria parasites in detail by using fluorescence and electron microscopy. A large number of nanomimics were able to bind to the parasites and the reduction of infection through the nanomimics was 100-fold higher when compared to a soluble form of the host cell receptors. In other words: In order to block all , a 100 times higher concentration of soluble host  is needed, than when the receptors are presented on the surface of nanomimics.

“Our results could lead to new alternative treatment and vaccines strategies in the future”, says Adrian Najer first-author of the study. Since many other pathogens use the same  receptor for invasion, the nanomimics might also be used against other . The research project was funded by the Swiss National Science Foundation and the NCCR “Molecular Systems Engineering”.

More information: Adrian Najer, Dalin Wu, Andrej Bieri, Françoise Brand, Cornelia G. Palivan, Hans-Peter Beck, and Wolfgang Meier. “Nanomimics of Host Cell Membranes Block Invasion and Expose Invasive Malaria Parasites.” ACS Nano, Publication Date (Web): November 29, 2014 | DOI: 10.1021/nn5054206

A Flu Virus That Killed Millions In 1918 Has Now Been Recreated


Wikimedia Commons

Spanish flu

Scientists have recreated a nearly exact replicate of the deadly flu virus that killed an estimated 50 million in the 1918 Spanish flu pandemic.

But don’t worry, they say it’s totally safe.

Researchers at the University of Wisconsin-Madison reverse engineered an influenza virus from a similar one found in birds, combining several strains to create one that is nearly identical to the one that caused the 1918 outbreak. They then mutated the genes to make it airborne, and to study how it spreads between animals.

“Our research indicates the risks inherent in circulating avian influenza viruses,” Yoshihiro Kawaoka, the scientist who led the research team, told VICE News. “Continued surveillance of avian influenza viruses — and not only viruses that we know pose risks for humans, such as H5N1 and H7N9 influenza viruses, and attention to pandemic preparedness measures is important.”

According to the statement summarizing the project published this week, the “analyses revealed the global prevalence of avian influenza virus genes whose proteins differ only a few amino acids from the 1918 pandemic influenza virus, suggesting that 1918-like pandemic viruses may emerge in the future.”

In other words, a common avian flu virus that has been circulating in wild ducks is pretty much the exact same one that infected humans a century ago. And now is in a lab.

The research was funded by the National Institute of Health as a way to find out more about similar virus’ and their transmissibility from animals to humans. It was done in a lab that complied with full safety and security regulations, said Carole Heilman, director of the Division of Microbiology and Infectious Diseases, at National Institute of Allergy and Infectious Diseases (NIAD), a division of NIH.

“It was an question of risk versus benefit,” Heilman told VICE News. “We determined that the risk benefit ratio was adequate if we had this type of safety regulations.”

But many scientists disagree and have condemned research that recreates virus’ such this, stating that if released accidentally, a virus could spread to humans and cause a pandemic. Marc Lipsitch, an epidemiologist at Harvard, has criticized research such as Kawaoka’s as unnecessarily risky.

“There is a quantifiable possibility that these novel pathogens could be accidentally or deliberately released. Exacerbating the immunological vulnerability of human populations to PPPs is the potential for rapid global dissemination via ever-increasing human mobility,” Lipsitch said in a paper about experiments with transmissible virus’. “The dangers are not just hypothetical.”

Lipsitch points out that many of the H1N1 flu outbreaks that have occurred between 1977 and 2009 were a result of a lab accident.

Kawaoka disagrees, saying, “We maintain that it is better to know as much as possible about the risk posed by these viruses so we may be able to identify the risk when viruses with pandemic potential emerge, and have effective countermeasures on-hand or ready for development.”

This article originally appeared at VICE News. Check them out on YouTube, Facebook, and Instagram. Copyright 2014. Follow VICE News on Twitter.

Pithovirus: 30,000-year-old giant virus ‘comes back to life’


A new virus called Pithovirus sibericum has been isolated from 30,000 year old Siberian permafrost. It is the oldest DNA virus of eukaryotes ever isolated, showing that viruses can retain infectivity in nature for very long periods of time.

Pithovirus was isolated by inoculating cultures of the amoeba Acanthamoeba castellani with samples taken in the year 2000 from 30 meters below the surface of a late Pleistocene sediment in the Kolyma lowland region. This amoeba had been previously used to propagate other giant viruses, such as Mimivirus and Pandoravirus. Light microscopy of the cultures revealed the presence of ovoid particles which were subsequently shown by electron microscopy to resemble those of Pandoravirus. Pithovirus particles are flask-shaped and slightly larger than Pandoravirus – 1.5 microns long, 500 nm in diameter, encased by a 60 nm thick membrane. One end of the virus particle appears to be sealed with what the authors call a cork (photo). This feature, along with the shape of the virus particle,  inspired the authors to name the new isolate Pithovirus, from the Greek word pithos which refers to the amphora given to Pandora. The name therefore refers both to the morphology of the virus particle and its similarity to Pandoravirus.

Although the Pithovirus particle is larger than Pandoravirus, the viral genome – which is a double-stranded molecule of DNA – is smaller, a ‘mere 610,033 base pairs’, to use the authors’ words (the Pandoravirus genome is 2.8 million base pairs in length). There are other viruses with genomes of this size packed into much smaller particles – so why is the Pithovirus particle so large? Might it have recently lost a good deal of its genome and the particle size has not yet caught up? One theory of the origin of viruses is that they originated from cells and then lost genes on their way to becoming parasitic.

We now know of viruses from two different families that have similar morphology: an amphora-like shape, an apex, and a thick electron-dense tegument covered by a lipid membrane enclosing an internal compartment. This finding should not be surprising: similar viral architectures are known to span families. The icosahedral architecture for building a particle, for example, can be found in highly diverse viral families. The question is how many viruses are built with the pithovirus/pandoravirus structure. Prof. Racaniello’s guess would be many, and they could contain either DNA genomes. We just need to look for them, a process, as the authors say that ‘will remain a challenging and serendipitous process’.

Despite the physical similarity with Pandoravirus, the Pithovirus genome sequence reveals that it is barely related to that virus, but more closely resembles members of the Marseillviridae, Megaviridae, and Iridoviridae. These families all contain large icosahedral viruses with DNA genomes.  Only 32% of the 467 predicted Pithovirus proteins have homologs in protein databases (this number was 61% for Mimivirus and 16% for Pandoravirus). In contrast to other giant DNA viruses, the genome of Pithovirus does not encode any component of the protein synthesis machinery. However the viral genome does encode the complete machinery needed to produce mRNAs. These proteins are present in the purified Pithovirus particle. Pithovirus therefore undergoes its entire replication cycle in the cytoplasm, much like other large DNA viruses such as poxviruses.

Pithovirus is an amazing virus that hints about the yet undiscovered viral diversity that awaits discovery. Its preservation in a permafrost layer suggests that these regions might harbor a vast array of infectious organisms that could be released as these regions thaw or are subjected to exploration for mineral and oil recovery. A detailed analysis of the microbes present in these regions is clearly needed, both by the culture technique used in this paper and by metagenomic analysis, to assess whether any constitute a threat to animals.

The above story is reprinted from materials provided by Virology blog: About Viruses and Viral Disease.

Source 3: Protein Essential for Ebola Virus Infection Is a Promising Antiviral Target

September 30, 2012 Leave a comment

In separate papers published online in Nature, two research teams report identifying a critical protein that Ebola virus exploits to cause deadly infections. The protein target is an essential element through which the virus enters living cells to cause disease.

The first study was led by four senior scientists: Sean Whelan, associate professor of microbiology and immunobiology at Harvard Medical School; Kartik Chandran, assistant professor at Albert Einstein College of Medicine; John Dye at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) and Thijn Brummelkamp, originally at the Whitehead Institute for Biomedical Research and now at the Netherlands Cancer Institute. The second study was led by James Cunningham, a Harvard Medical School associate professor of medicine at Brigham and Women’s Hospital, and also co-authored by Chandran.

“This research identifies a critical cellular protein that the Ebola virus needs to cause infection and disease,” explained Whelan, who is also co-director of the HMS Program in Virology. “The discovery also improves chances that drugs can be developed that directly combat Ebola infections.”

Both papers are published in the August 24 online issue of Nature.

The African Ebola virus — and its cousin, Marburg virus — are known as the filoviruses. Widely considered one of the most dangerous infections known, Ebola was first identified in 1976 in Africa near the Ebola River, an area in Sudan and the Democratic Republic of the Congo. Infections cause severe hemorrhage, multiple organ failure and death. No one quite knows how the virus is spread, and there are no available vaccines or anti-viral drugs that can fight the infections.

Through conducting a genome-wide genetic screen in human cells aimed at identifying molecules essential for Ebola’s virulence, Whelan and his colleagues homed in on Niemann-Pick C1 (NPC1).

NPC1 has been well known in the biomedical literature. Primarily associated with cholesterol metabolism, this protein, when mutated, causes a rare genetic disorder in children, Niemann-Pick disease.

Using cells derived from these patients, the group found that this mutant form of NPC1 also completely blocks infection by the Ebola virus. They also demonstrated that mice carrying a mutation in the NPC1 gene resisted Ebola infection. Similar resistance was found in cultured cells in which the normal molecular structure of the Niemann-Pick protein has been altered.

In other words, targeting NPC1 has real therapeutic potential. While such a treatment may also block the cholesterol transport pathway, short-term treatment would likely be tolerated.

Indeed in the accompanying paper, Cunningham’s group describes such a potential inhibitor.

Cunningham and his group at Brigham and Women’s Hospital investigated Ebola by using a robotic method developed by their colleagues at the National Small Molecule Screening Laboratory at Harvard Medical School to screen tens of thousands of compounds. The team identified a novel small molecule that inhibits Ebola virus entry into cells by more than 99 percent.

The team then used the inhibitor as a probe to investigate the Ebola infection pathway and found that the inhibitor targeted NPC1.

For Cunningham and Chandran, this finding builds on a 2005 paper of theirs for which Whelan was also a collaborator. In that study, he and his group discovered how Ebola exploits a protein called cathepsin B. This new study completes the puzzle. It now seems that cathepsin B interacts with Ebola in a way that preps it to subsequently bind with NPC1.

“It is interesting that NPC1 is critical for the uptake of cholesterol into cells, which is an indication of how the virus exploits normal cell processes to grow and spread,” said Cunningham. “Small molecules that target NPC1 and inhibit Ebola virus infection have the potential to be developed into anti-viral drugs.”

The paper coauthored by Whelan was funded by the U.S. National Institute of Allergy and Infectious Diseases and the National Human Genome Research Institute, the U.S. Army, and the Burroughs Wellcome Foundation. Cunningham’s work was funded by the New England Regional Center of Excellence for Biodefense and Emerging Infectious Diseases at Harvard Medical School.

Story Source:

The above story is reprinted from materials provided by Harvard Medical School, via ScienceDaily. The original article was written by Robert Cooke and Lori Shanks.

Journal References:

  • Jan E. Carette, Matthijs Raaben, Anthony C. Wong, Andrew S. Herbert, Gregor Obernosterer, Nirupama Mulherkar, Ana I. Kuehne, Philip J. Kranzusch, April M. Griffin, Gordon Ruthel, Paola Dal Cin, John M. Dye, Sean P. Whelan, Kartik Chandran, Thijn R. Brummelkamp. Ebola virus entry requires the cholesterol transporter Niemann–Pick C1. Nature, 2011; DOI: 10.1038/nature10348
  • Marceline Côté, John Misasi, Tao Ren, Anna Bruchez, Kyungae Lee, Claire Marie Filone, Lisa Hensley, Qi Li, Daniel Ory, Kartik Chandran, James Cunningham. Small molecule inhibitors reveal Niemann–Pick C1 is essential for Ebola virus infection. Nature, 2011; DOI: 10.1038/nature10380

Source 2: Scientists Identify Point of Entry for Deadly Ebola Virus

September 30, 2012 Leave a comment

Ebola virus, the cause of Ebola hemorrhagic fever (EHF), is one of the deadliest known viruses affecting humans. Like anthrax and smallpox virus, Ebola virus is classified by the U.S. Centers for Disease Control and Prevention (CDC) as a category A bioterrorism agent. Currently, there is no vaccine to prevent EHF, and patients are treated only for their symptoms.Although outbreaks are rare, Ebola virus, the cause of Ebola hemorrhagic fever (EHF), is one of the deadliest known viruses affecting humans. According to the World Health Organization (WHO), approximately 1,850 EHF cases with more than 1,200 deaths have been documented since the virus was identified in 1976.

This negatively-stained transmission electron micrograph (TEM) revealed some of the ultrastructural curvilinear morphologic features displayed by the Ebola virus discovered from the Ivory Coast of Africa. (Credit: Charles Humphrey). (up)

EHF’s clinical presentation can be devastating: fever, intense weakness, and joint and muscle aches progress to diarrhea, vomiting, and in some cases, internal and external bleeding caused by disintegrating blood vessels. Currently, there is no approved vaccine and patients are treated only for their symptoms. Like anthrax and smallpox virus, Ebola virus is classified as a category A bioterrorism agent by the U.S. Centers for Disease Control and Prevention (CDC).

Until now, however, researchers had only a limited understanding of how Ebola virus gains entry to a host cell.

Using an unusual human cell line, Whitehead Institute scientists and collaborators from Harvard Medical School, Albert Einstein College of Medicine and U.S. Army Medical Research Institute of Infectious Diseases, have identified the Niemann-Pick C1 (NPC1) protein as crucial for Ebola virus to enter cells and begin replicating. The discovery may offer a new and better approach for the development of antiviral therapeutics, as it would target a structure in the host cell rather than a viral component.

The findings are reported online in Nature this week.

Where all of us inherit one copy of each chromosome from each of our two parents, cell lines exist with only a single set, and thus with a single copy of each individual gene, instead of the usual two. Using an unusual human cell line of this type, Whitehead Institute researchers and their collaborators performed a genetic screen and identified a protein used by Ebola virus to gain entry into cells and begin replicating. The discovery may offer a new approach for the development of antiviral therapeutics.

“Right now, people make therapeutics to inactivate the pathogen itself. But the problem is that pathogens can quickly change and escape detection and elimination by the immune system,” says former Whitehead Fellow Thijn Brummelkamp, now a group leader at the Netherlands Cancer Institute (NKI). “Here we get a good idea of the host genes that are needed for the pathogen to enter the cell for replication. Perhaps by generating therapeutics against those host factors, we would have a more stable target for antiviral drugs.”

The method developed by the Brummelkamp lab to identify host factors relies on gene disruption — knocking out gene function in the host cells, one gene at a time — and documenting which cells survive due to mutations that afford protection from viral entry.

But human cells are diploid with two copies of each chromosome and its genes. Researchers can reliably target and knock out one copy of a gene, but doing so for both copies is far more difficult and time-consuming. If only a single copy is silenced, the other continues to function normally and masks any effect of the knockout.

To sidestep this obstacle, Jan Carette, a first co-author on the Nature paper and a former postdoctoral researcher in the Brummelkamp lab, employed a technique he had previously applied to study the cytolethal distending toxin (CDT) family that is secreted by multiple pathogenic bacteria, including Escherichia coli, Shigella dysenteriae, and Haemophilus ducreyi. Each bacterial species has developed its own twists on the CDT structure, which may link to the target tissues of the toxin’s bacterium.

In his CDT work published in Nature Biotechnology, Carette together with co-lead authors of Whitehead Member Hidde Ploegh’s lab, used a line of haploid cells isolated from a chronic myeloid leukemia (CML) patient. Because these cells, called KBM7 cells, have only one copy of each chromosome except chromosome 8, the researchers could disrupt the expression of each gene and screen for mutants with the desired properties, in this case survival of a lethal dose of toxin.

After knocking out individual genes by disrupting the normal structure of the gene, the resulting mutant KBM7 cells were exposed to various CDTs. In the cells that survived, Carette and coauthors knew that genes that had been disrupted were somehow crucial to CDT intoxication. By analyzing the surviving cell’s genomes, Carette and coauthors identified ten human proteins that are used by CDTs during intoxication, and those host factors seem to be tailored to each CDT’s targeted cell.

“I found it surprising that there is quite some specificity in the entry routes for each toxin,” says Carette. “If you take CDTs that are very similar to each other in structure, you could still see significant differences in the host factors they require to do their job. So it seems that every pathogen evolved a specific and unique way of its toxin entering the cells.”

To study Ebola virus, Carette and co-lead authors from Harvard Medical School and the Albert Einstein College of Medicine made use of an otherwise harmless virus cloaked in the Ebola virus glycoprotein coat. Using this virus and by altering the haploid cells somewhat, Carette and coauthors were able to pinpoint the cellular genes that Ebola virus relies on to enter the cell.

Carette and coauthors identified as necessary for Ebola virus entry several genes involved in organelles that transport and recycle proteins. One gene in particular stood out, NPC1, which codes for a cholesterol transport protein, and is necessary for the virus to enter the cell’s cytoplasm for replication. Mutations in this gene cause a form of Niemann-Pick disease, an ultimately fatal neurological disorder diagnosed mainly in children.

Collaborators at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) tested the effects of active Ebola virus on mice that had one copy of the NPC1 gene knocked out. Control mice, with two functioning copies of the NPC1 gene, quickly succumbed to infection, while the NPC1 knockout mice were largely protected from the virus.

“This is pretty unexpected,” says Carette, who is currently an Acting Assistant Professor in Microbiology & Immunology at Stanford School of Medicine. “This might imply that genetic mutations in the NPC1 gene in humans could make some people resistant to this very deadly virus. And now that we know that NPC1 is an Ebola virus host factor, it provides a strong platform from which to start developing new antivirals.”

This research was supported by the National Institutes of Health (NIH), the U.S. Army, Boehringer Ingelheim Fonds and a Burroughs Wellcome Award.

Story Source:

The above story is reprinted from materials provided by Whitehead Institute for Biomedical Research, via ScienceDaily. The original article was written by Nicole Giese.

Journal References:

  • Jan E. Carette, Matthijs Raaben, Anthony C. Wong, Andrew S. Herbert, Gregor Obernosterer, Nirupama Mulherkar, Ana I. Kuehne, Philip J. Kranzusch, April M. Griffin, Gordon Ruthel, Paola Dal Cin, John M. Dye, Sean P. Whelan, Kartik Chandran, Thijn R. Brummelkamp. Ebola virus entry requires the cholesterol transporter Niemann–Pick C1. Nature, 2011; DOI: 10.1038/nature10348
  • Jan E Carette, Carla P Guimaraes, Irene Wuethrich, Vincent A Blomen, Malini Varadarajan, Chong Sun, George Bell, Bingbing Yuan, Markus K Muellner, Sebastian M Nijman, Hidde L Ploegh, Thijn R Brummelkamp. Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nature Biotechnology, 2011; 29 (6): 542 DOI: 10.1038/nbt.1857

Source 1: Researchers Find ‘Key’ Used by Ebola Virus to Unlock Cells and Spread Deadly Infection

September 30, 2012 Leave a comment

Researchers at Albert Einstein College of Medicine of Yeshiva University have helped identify a cellular protein that is critical for infection by the deadly Ebola virus. The findings, published in the August 24 online edition of Nature, suggest a possible strategy for blocking infection due to Ebola virus, one of the world’s most lethal viruses and a potential bioterrorism agent.

The study was a collaborative effort involving scientists from Einstein, the Whitehead Institute for Biomedical Research, Harvard Medical School, and the U.S. Army Medical Research Institute of Infectious Diseases

Ebola virus is notorious for killing up to 90 percent of the people it infects. Ebola hemorrhagic fever — the severe, usually fatal disease that Ebola virus causes in humans and in nonhuman primates — first emerged in 1976 in villages along the Ebola River in the Sudan and the Democratic Republic of the Congo, Africa. Since then, about two dozen outbreaks have occurred.

This drawing illustrates the sequence of events from the time the Ebola virus first enters the host cell (top) until the virus gains its release into the cytoplasm, where it can multiply (bottom). Researchers have shown that Ebola exists in the lysosome and enters the cytoplasm by interacting with NPC1 protein molecules (orange) embedded in the lysosomal membrane. (Credit: Image courtesy of Albert Einstein College of Medicine) (right)

Though Ebola and Marburg hemorrhagic fevers are fortunately rare diseases, “even small outbreaks of Ebola or Marburg virus can cause fear and panic,” said co-senior author Kartik Chandran, Ph.D., assistant professor of microbiology & immunology at Einstein “And then there’s the worry that these viruses could be used for bioterrorism.”

Ebola virus’s ability to enter cells is reminiscent of the Trojan Horse used by the ancient Greeks to defeat their archenemies. Ebola virus binds to the host cell’s outer membrane, and a portion of host cell membrane then surrounds the virus and pinches off, creating an endosome — a membrane-bound bubble inside the cell (see image). Endosomes carry their viral stowaways deep within the cell and eventually mature into lysosomes — tiny enzyme-filled structures that digest and recycle cellular debris.

The viruses captive in the lysosome manage to escape destruction by exploiting components of the cell to gain entry to the cytoplasm, the substance between the cell membrane and the nucleus where the virus can replicate. But the identities of many of these components have remained unknown.

In seeking the answer, Einstein researchers and colleagues searched for proteins that Ebola virus might exploit to enter the cell’s cytoplasm. One such cellular protein, known as Niemann-Pick C1 (NPC1), stood out.

“We found that if your cells don’t make this protein, they cannot be infected by Ebola virus,” said Dr. Chandran. “Obviously it’s very early days, but we think our discovery has created a real therapeutic opportunity.” At present, there are no drugs available to treat people who have been infected with Ebola virus or approved vaccines to prevent illness.”

The NPC1 protein is embedded within cell membranes, where it helps transport cholesterol within the cell. However, the absence of NPC1 due to gene mutations causes a rare degenerative disorder called Niemann-Pick disease, in which cells become clogged up with cholesterol and eventually die.

To confirm their finding that NPC1 is crucial for Ebola virus infection, the researchers challenged mice carrying a mutation in NPC1 with Ebola virus. Remarkably, most of these mutant mice survived the challenge with this normally deadly virus. Similarly, fibroblast cells (found in connective tissue) from people with Niemann-Pick disease were resistant to Ebola virus infection, as were human cells from other organs that were manipulated to reduce the amount of NPC1 they contained.

The researchers also tested whether other major viruses need NPC1 to infect human cells. Only Ebola virus and its close relative, Marburg virus, were found to require the presence of NPC1 protein for infection. Like Ebola virus, Marburg virus also needs NPC1 to kill mice.

“Our work suggests that these viruses need NPC1, which is embedded in the lysosomal membrane, to escape from the lysosome into the cytoplasm,” said Dr. Chandran. “We are now testing that hypothesis in the laboratory.”

The discovery of NPC1’s crucial role in Ebola infection raises the possibility that Ebola and Marburg virus outbreaks could be thwarted by a drug that blocks the action of NPC1. “Even though such a treatment would also block the cholesterol transport pathway, we think it would be tolerable,” said Dr. Chandran. “Most outbreaks are short-lived, so treatment would be needed for only a short time.” Einstein, in conjunction with the Whitehead Institute of Biomedical Research and Harvard Medical School, has filed a patent application related to this research that is available for licensing to partners interested in further developing and commercializing this technology.

Remarkably, an anti-Ebola virus inhibitor Dr. Chandran found as a postdoctoral fellow at the Brigham and Women’s Hospital in Boston, MA turns out to be just such an NPC1 blocker, as described in a separate manuscript by Côté and co-workers to be published in the same issue of Nature.

Story Source:

The above story is reprinted from materials provided by Albert Einstein College of Medicine, via ScienceDaily.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:

Jan E. Carette, Matthijs Raaben, Anthony C. Wong, Andrew S. Herbert, Gregor Obernosterer, Nirupama Mulherkar, Ana I. Kuehne, Philip J. Kranzusch, April M. Griffin, Gordon Ruthel, Paola Dal Cin, John M. Dye, Sean P. Whelan, Kartik Chandran, Thijn R. Brummelkamp. Ebola virus entry requires the cholesterol transporter Niemann–Pick C1. Nature, 2011; DOI: 10.1038/nature10348

How Deadly Marburg Virus Silences Immune System: Breakthrough Findings Point to Targets for Drugs and Vaccines

September 30, 2012 Leave a comment

Scientists at The Scripps Research Institute have determined the structure of a critical protein from the Marburg virus, a close cousin of Ebola virus. These viruses cause similar diseases and are some of the deadliest pathogens on the planet, each killing up to 90 percent of those infected.

The Marburg virus VP35 protein (beige) surrounds the virus’s double-stranded RNA (blue), masking it from immune system detection. (Credit: Image by Christina Corbaci, The Scripps Research Institute) (up)

Described in the Sept. 13, 2012 publication of the journal PLoS Pathogens, the new research reveals how a key protein component of the Marburg virus, called VP35, blocks the human immune system, allowing the virus to grow unchecked. The structure provides a major step forward in understanding how the deadly virus works, and may be useful in the development of potential treatments for those infected.

“The immune system is designed to recognize certain hallmarks of virus infection,” said Erica Ollmann Saphire, the Scripps Research scientist who led the effort. “When these are sensed, an immediate antiviral defense is launched. However, the Marburg and Ebola viruses mask the evidence of their own infection. By doing so, the viruses are able to replicate rapidly and overwhelm the patient’s ability to launch an effective defense.”

Deadly Outbreaks

Ebola virus outbreaks have occurred in the last month in both Uganda and the Democratic Republic of the Congo, while Marburg virus broke out in Angola in 2005 to 2006 and again in Uganda in 2007. The Angolan Marburg virus outbreak began in a pediatric ward and killed 88 percent of those it infected. The virus has since been imported into the United States (Colorado) and the Netherlands by tourists who had visited Africa.

There is currently no cure for Marburg hemorrhagic fever. The virus is spread when people come into contact with the bodily fluids of a person or animal who is already infected. The best treatment consists of administering fluids and taking protective measures to ensure containment, like isolating the patient and washing sheets with bleach.

Most people, however, die within two weeks of exposure from a combination of dehydration, massive bleeding, and shock. A smaller number of people have stronger and immediate immune responses against the virus and survive.

A New Roadmap for Defense

The breakthrough described in the PLoS Pathogens article explains a key reason why the viruses are so deadly and provides the necessary templates to develop drugs to treat the infection.

The study’s lead author, Research Associate Shridhar Bale, explains that a key signature of Marburg virus infection is the double-stranded RNA that results from its replication inside cells. When human immune system proteins detect this virus-specific RNA, they sound an alarm to signal the rest of the immune system to respond. The new research describes how the VP35 protein of the Marburg virus binds to the viral double-stranded RNA and hides it to prevent the alarm from being sounded.

The new research also revealed a surprise. Images from the Marburg virus reveal the VP35 protein spirals around the double-stranded RNA, enveloping it completely. This is in contrast to previous images of the similar VP35 protein from Ebola virus that showed it only capping the ends of the RNA, leaving the center of the RNA helix exposed for possible recognition.

In addition to Ollmann Saphire and Bale, the article, “Marburg virus VP35 can both fully coat the backbone and cap the ends of dsRNA for interferon antagonism,” was authored by Jean-Philippe Julien, Zachary A. Bornholdt, Michelle A. Zandonatti, Gerard J.A. Kroon, Christopher R. Kimberlin, Ian J. MacRae, and Ian A. Wilson of The Scripps Research Institute, and Peter Halfmann, John Kunert, and Yoshihiro Kawaoka of the University of Wisconsin.

Support for the research was provided by grants from the Burroughs Wellcome Fund and The Skaggs Institute for Chemical Biology at Scripps Research.

Source:

The above story is reprinted from materials provided by Scripps Research Institute, via ScienceDaily

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:

Bale S, Julien J-P, Bornholdt ZA, Kimberlin CR, Halfmann P, et al. Marburg Virus VP35 Can Both Fully Coat the Backbone and Cap the Ends of dsRNA for Interferon Antagonism. PLoS Pathog. PLoS Pathogens, 2012; 8(9): e1002916 DOI: 10.1371/journal.ppat.1002916