Archive

Posts Tagged ‘hemisphere’

Neuroscientist debunks one of the most popular myths about the brain

March 16, 2015 Leave a comment

At some point in your life, you’ve probably been labeled a “right-brain thinker” (you’re so creative!) or a “left-brain thinker” (you’re so logical). Maybe this has shaped the way you see yourself or view the world.

Well, either way it’s bogus science, says Sarah-Jayne Blakemore, a University College London professor of cognitive science, in the latest episode of the Freakonomics Radio Podcast.

“This is an idea that makes no physiological sense,” she says.

The popular “right brain-left brain” theory for explaining people’s personalities is not actually backed by science.

Blakemore believes that the concept of “logical, analytical, and accurate” thinkers favoring their left hemisphere and “creative, intuitive, and emotional” thinkers favoring their right hemisphere is the misinterpretation of valuable science. She thinks it entered pop culture because it makes for snappy self-help books. And of course people love categorizing themselves.

In the ’60s, ’70s, and ’80s, the renowned cognitive neuroscientist Michael Gazzaniga led breakthrough studies on how the brain works. He studied patients who — and here’s the key — lacked a corpus callosum, the tract that connect the brain’s hemispheres. During this time doctors had experimented on patients suffering from constant seizures due to intractable epilepsy by disconnecting the hemispheres.

Gazzaniga could thus determine the origins in the brain of certain cognitive and motor functions by monitoring the brains of these patients.

He found, for example, that a part of the left brain he dubbed “The Interpreter” handled the process of explaining actions that may have begun in the right brain.

He discovered “that each hemisphere played a role in different tasks and different cognitive functions, and that normally one hemisphere dominated over the other,” Blakemore explains.

This was breakthrough research on how parts of the brain worked. But in a normal human being, the corpus callosum is constantly transmitting information between both halves. It’s physically impossible to favor one side.

Blakemore thinks that this misinterpretation of the research is actually harmful, because the dichotomous labels convince people that their way of thinking is genetically fixed on a large scale.

“I mean, there are huge individual differences in cognitive strengths,” Blakemore says. “Some people are more creative; others are more analytical than others. But the idea that this has something to do with being left-brained or right-brained is completely untrue and needs to be retired.”

You can listen to Blakemore and many other experts taking down their least favorite ideas in the Freakonomics Radio episode “This Idea Must Die,” hosted by “Freakonomics” co-author Stephen J. Dubner.

The above story is reprinted from materials provided by BusinessInsider.

Math ability requires crosstalk in the brain

September 9, 2012 Leave a comment

 

Examples of the simple numerical and arithmetic tasks used in the study. Participants were asked to judge whether the numerical operation was correct or not. Credit: Center for Vital Longevity, University of Texas at Dallas. (up)

A new study by researchers at UT Dallas’ Center for Vital Longevity, Duke University, and the University of Michigan has found that the strength of communication between the left and right hemispheres of the brain predicts performance on basic arithmetic problems. The findings shed light on the neural basis of human math abilities and suggest a possible route to aiding those who suffer from dyscalculia— an inability to understand and manipulate numbers.

It has been known for some time that the parietal cortex, the top/middle region of the brain, plays a central role in so-called numerical cognition—our ability to process numerical information. Previous brain imaging studies have shown that the right parietal region is primarily involved in basic quantity processing (like gauging relative amounts of fruit in baskets), while the left parietal region is involved in more precise numerical operations like addition and subtraction. What has not been known is whether the two hemispheres can work together to improve math performance. The new study demonstrates that they can. The findings were recently published online in Cerebral Cortex.

In the study, conducted in Dallas and led by Dr. Joonkoo Park, now a postdoctoral fellow at Duke University, researchers used functional magnetic resonance imaging, or fMRI, to measure the brain activity of 27 healthy young adults while they performed simple numerical and arithmetic tasks. In one task, participants were asked to judge whether two groups of shapes contained the same or different numbers of items. In two other tasks, participants were asked to solve simple addition and subtraction problems.

Consistent with previous studies, the researchers found that the basic number-matching task activated the right parietal cortex, while the addition and subtraction tasks produced additional activity in the left parietal cortex. But they also found something new: During the arithmetic tasks, communication between the left and right hemispheres increased significantly compared with the number-matching task. Moreover, people who exhibited the strongest connection between hemispheres were the fastest at solving the subtraction problems.

“Our results suggest that subtraction performance is optimal when there is high coherence in the neural activity in these two brain regions. Two brain areas working together rather than either region alone appears to be key” said co-author Dr. Denise C. Park, co-director of the UT Dallas Center for Vital Longevity and Distinguished University Chair in the School of Behavioral and Brain Sciences. Park (no relation to the lead author) helped direct the study along with Dr. Thad Polk, professor of psychology at the University of Michigan.

Lead author Dr. Joonkoo Park points out that the findings suggest that disrupted or inefficient neural communication between the hemispheres may contribute to the impaired math abilities seen in dyscalculia, the numerical equivalent of dyslexia. “If such a causal link exists,” he said, “one very interesting avenue of research would be to develop training tasks to enhance parietal connectivity and to test whether they improve numerical competence.”

Such a training program might help develop math ability in children and could also help older adults whose arithmetic skills begin to falter as a normal part of age-related cognitive decline.

 

Reference:

The above story is reprinted from materials provided by University of Texas at Dallas, via MedicalXpress.

Journal: Cerebral Cortex

 

Mathematics or memory? Posterior Medial Cortex Study Charts Collision Course in Brain

September 8, 2012 Leave a comment

You already know it’s hard to balance your checkbook while simultaneously reflecting on your past. Now, investigators at the Stanford University School of Medicine—having done the equivalent of wire-tapping a hard-to-reach region of the brain—can tell us how this impasse arises.

The researchers showed that groups of nerve cells in a structure called the posterior medial cortex, or PMC, are strongly activated during a recall task such as trying to remember whether you had coffee yesterday, but just as strongly suppressed when you’re engaged in solving a math problem.

The PMC, situated roughly where the brain’s two hemispheres meet, is of great interest to neuroscientists because of its central role in introspective activities.

“This brain region is famously well-connected with many other regions that are important for higher cognitive functions,” said Josef Parvizi, MD, PhD, associate professor of neurology and neurological sciences and director of Stanford’s Human Intracranial Cognitive Electrophysiology Program. “But it’s very hard to reach. It’s so deep in the brain that the most commonly used electrophysiological methods can’t access it.”

In a study to be published online Sept. 3 in Proceedings of the National Academy of Sciences, Parvizi and his Stanford colleagues found a way to directly and sensitively record the output from this ordinarily anatomically inaccessible site in human subjects. By doing so, the researchers learned that particular clusters of nerve cells in the PMC that are most active when you are recalling details of your own past are strongly suppressed when you are performing mathematical calculations. Parvizi is the study’s senior author. The first and second authors, respectively, are postdoctoral scholars Brett Foster, PhD, and Mohammed Dastjerdi, PhD.

Much of our understanding of what roles different parts of the brain play has been obtained by techniques such as functional magnetic resonance imaging, which measures the amount of blood flowing through various brain regions as a proxy for activity in those regions. But changes in blood flow are relatively slow, making fMRI a poor medium for listening in on the high-frequency electrical bursts (approximately 200 times per second) that best reflect nerve-cell firing. Moreover, fMRI typically requires pooling images from several subjects into one composite image. Each person’s brain physiognomy is somewhat different, so the blending blurs the observable anatomical coordinates of a region of interest.

Nonetheless, fMRI imaging has shown that the PMC is quite active in introspective processes such as autobiographical memory processing (“I ate breakfast this morning”) or daydreaming, and less so in external sensory processing (“How far away is that pedestrian?”). “Whenever you pay attention to the outside world, its activity decreases,” said Parvizi.

To learn what specific parts of this region are doing during, say, recall versus arithmetic requires more-individualized anatomical resolution than an fMRI provides. Otherwise, Parvizi said, “if some nerve-cell populations become less active and others more active, it all washes out, and you see no net change.” So you miss what’s really going on.

For this study, the Stanford scientists employed a highly sensitive technique to demonstrate that introspective and externally focused cognitive tasks directly interfere with one another, because they impose opposite requirements on the same brain circuitry.

The researchers took advantage of a procedure performed on patients who were being evaluated for brain surgery at the Stanford Epilepsy Monitoring Unit, associated with Stanford University Medical Center. These patients were unresponsive to drug therapy and, as a result, suffered continuing seizures. The procedure involves temporarily removing small sections of a patient’s skull, placing a thin plastic film containing electrodes onto the surface of the brain near the suspected point of origin of that patient’s seizure (the location is unique to each patient), and then monitoring electrical activity in that region for five to seven days—all of it spent in a hospital bed. Once the epilepsy team identifies the point of origin of any seizures that occurred during that time, surgeons can precisely excise a small piece of tissue at that position, effectively breaking the vicious cycle of brain-wave amplification that is a seizure.

Implanting these electrode packets doesn’t mean piercing the brain or individual cells within it. “Each electrode picks up activity from about a half-million nerve cells,” Parvizi said. “It’s more like dotting the ceiling of a big room, filled with a lot of people talking, with multiple microphones. We’re listening to the buzz in the room, not individual conversations. Each microphone picks up the buzz from a different bunch of partiers. Some groups are more excited and talking more loudly than others.”

The experimenters found eight patients whose seizures were believed to be originating somewhere near the brain’s midline and who, therefore, had had electrode packets placed in the crevasse dividing the hemispheres. (The brain’s two hemispheres are spaced far enough apart to slip an electrode packet between them without incurring damage.)

The researchers got permission from these eight patients to bring in laptop computers and put the volunteers through a battery of simple tasks requiring modest intellectual effort. “It can be boring to lie in bed waiting seven days for a seizure to come,” said Foster. “Our studies helped them pass the time.” The sessions lasted about an hour.

On the laptop would appear a series of true/false statements falling into one of four categories. Three categories were self-referential, albeit with varying degrees of specificity. Most specific was so-called “autobiographical episodic memory,” an example of which might be: “I drank coffee yesterday.” The next category of statements was more generic: “I eat a lot of fruit.” The most abstract category, “self-judgment,” comprised sentences along the lines of: “I am honest.”

A fourth category differed from the first three in that it consisted of arithmetical equations such as: 67 + 6 = 75. Evaluating such a statement’s truth required no introspection but, instead, an outward, more sensory orientation.

For each item, patients were instructed to press “1” if a statement was true, “2” if it was false.

Significant portions of the PMC that were “tapped” by electrodes became activated during self-episodic memory processing, confirming the PMC’s strong role in recall of one’s past experiences. Interestingly, true/false statements involving less specifically narrative recall—such as, “I eat a lot of fruit”—induced relatively little activity. “Self-judgment” statements—such as, “I am attractive”—elicited none at all. Moreover, whether a volunteer judged a statement to be true or false made no difference with respect to the intensity, location or duration of electrical activity in activated PMC circuits.

This suggests, both Parvizi and Foster said, that the PMC is not the brain’s “center of self-consciousness” as some have proposed, but is more specifically engaged in constructing autobiographical narrative scenes, as occurs in recall or imagination.

Foster, Dastjerdi and Parvizi also found that the PMC circuitry activated by a recall task took close to a half-second to fire up, ruling out the possibility that this circuitry’s true role was in reading or making sense of the sentence on the screen. (These two activities are typically completed within the first one-fifth of a second or so.) Once activated, these circuits remained active for a full second.

Yet all the electrodes that lit up during the self-episodic condition were conspicuously deactivated during arithmetic calculation. In fact, the circuits being monitored by these electrodes were not merely passively silent, but actively suppressed, said Parvizi. “The more a circuit is activated during autobiographical recall, the more it is suppressed during math. It’s essentially impossible to do both at once.”

Reference:

The above story is reprinted from materials provided by Stanford University Medical Center, via MedicalXpress.

Journal: Proceedings of the National Academy of Sciences

Right And Left Brain

February 17, 2012 1 comment

The brain is divided physically into a left and right half is not a new discovery. The Egyptians knew that the left side of the brain controlled and received sensations from the right side of the body and vice versa.

It is only in the last two dozen years, however, that the true implication of the left/right split has gradually become apparent, through the work of a number of researchers. The most famous are probably Dr.  Roger Sperry and Dr. Robert Ornstein of the California Institute of Technology. Their work has won them a Nobel prize.

Sperry and Ornstein noted that the left and the rig hemispheres are connected by an incredibly complex  network of up to 300 million nerve fibres called the Corpus callosum. They were also able to show that the two halves of the brain tend to have different functions.

They (and other researchers) indicate that the left brain primarily appears to deal with language and mathematical processes and logical thought, sequences, analysis and what we generally label academic  pursuits. The right brain principally deals with music, and visual impressions, pictures, spatial patterns, and colour recognition. They also ascribe to the right brain the ability to deal with certain kinds of conceptual   thought – intangible ‘ideas’ such as love, loyalty, beauty.

The specialization of the two halves of the brain can result in some bizarre behaviour. Patients who, for medical reasons, have had their Corpus callosum  severed,  have effectively two semi-independent brains: two minds in one head.

If a ball is shown to the left visual field of such a person, i.e. registered to their right brain hemisphere, the speaking half of the brain, which is in the other, (left) brain will claim to have seen nothing. If, however, the patient is asked to feel in a bag of assorted shapes he will correctly pull out a ball. If he is asked what he has done he will say ‘nothing’. The ball has only been seen with the right brain, and felt with the right brain. The speech centre, which is located in the left brain, has registered nothing.

Even more delicate experiments have been performed on surgically split-brained patients. The word SINBAD was projected to such a patient while his eyes were focused on the precise spot between N and B. The first 3 letters went to his right brain, the last three to his left hemisphere. When asked to saywhat he had seen, he replied BAD. When asked to point with his left hand to what he had seen he pointed to the word SIN.

The specialisation of the two brains  has also been demonstrated by measuring the electrical activity of the brain during various activities.

When the brain is relaxed in a state of rest, it tends predominantly to show an alpha brain wave rhythm – i.e. 8-12 Hz waves. Ornstein found that a subject tackling a mathematical problem showed an increase in alpha in the right hemisphere. This indicated that the right side was relaxing whilst the left was active and, therefore, in a beta brain wave pattern. In contrast, when a subject was matching coloured patterns, the left showed alpha (i.e. was resting) and the right showed beta (i.e. was active). More on brain waves can be found here.

The brain scans, show the varying levels of electrical brain activity in a subject listening to music, words and singing. The first activity (music) involved the right brain. The second (listening to words only) involved the  left brain, but singing (words and music together) involved the whole brain.

The left brain is now thought to be the half that specialises in serial, sequential thought, i.e. analysing  information in sequence in a ”logical” step by step approach. The left rationalises. The right brain seems to take in several bits of information ”at a glance” and process them into one overall thought. The right synthesises.

To read more click on this link to the full article: Right and Left Brain

Right or Left? Brain Stimulation Can Change Which Hand You Favor

October 6, 2011 Leave a comment

When the left posterior parietal cortex of the brain received magnetic stimulation, right-handed volunteers were more likely to use their left hand to perform simple one-handed tasks, UC Berkeley research shows. (left; Credit: Image courtesy of Flavio Oliveira)

 

Each time we perform a simple task, like pushing an elevator button or reaching for a cup of coffee, the brain races to decide whether the left or right hand will do the job. But the left hand is more likely to win if a certain region of the brain receives magnetic stimulation, according to new research from the University of California, Berkeley.

UC Berkeley researchers applied transcranial magnetic stimulation (TMS) to the posterior parietal cortex region of the brain in 33 right-handed volunteers and found that stimulating the left side spurred an increase in their use of the left hand.

The left hemisphere of the brain controls the motor skills of the right side of the body and vice versa. By stimulating the parietal cortex, which plays a key role in processing spatial relationships and planning movement, the neurons that govern motor skills were disrupted.

“You’re handicapping the right hand in this competition, and giving the left hand a better chance of winning,” said Flavio Oliveira, a UC Berkeley postdoctoral researcher in psychology and neuroscience and lead author of the study, published in the journal Proceedings of the National Academy of Sciences.

The study’s findings challenge previous assumptions about how we make decisions, revealing a competitive process, at least in the case of manual tasks. Moreover, it shows that TMS can manipulate the brain to change plans for which hand to use, paving the way for clinical advances in the rehabilitation of victims of stroke and other brain injuries.

“By understanding this process, we hope to be able to develop methods to overcome learned limb disuse,” said Richard Ivry, UC Berkeley professor of psychology and neuroscience and co-author of the study.

At least 80 percent of the people in the world are right-handed, but most people are ambidextrous when it comes to performing one-handed tasks that do not require fine motor skills.

“Alien hand syndrome,” a neurological disorder in which victims report the involuntary use of their hands, inspired researchers to investigate whether the brain initiates several action plans, setting in motion a competitive process before arriving at a decision.

While the study does not offer an explanation for why there is a competition involved in this type of decision-making, researchers say it makes sense that we adjust which hand we use based on changing situations. “In the middle of the decision process, things can change, so we need to change track,” Oliveira said.

In TMS, magnetic pulses alter electrical activity in the brain, disrupting the neurons in the underlying brain tissue. While the current findings are limited to hand choice, TMS could, in theory, influence other decisions, such as whether to choose an apple or an orange, or even which movie to see, Ivry said.

With sensors on their fingertips, the study’s participants were instructed to reach for various targets on a virtual tabletop while a 3-D motion-tracking system followed the movements of their hands. When the left posterior parietal cortex was stimulated, and the target was located in a spot where they could use either hand, there was a significant increase of the use of the left hand, Oliveira said.

Other coauthors of the study are Jörn Diedrichsen from University College London, Timothy Gerstner from the University of Pittsburg and Julie Duque from the Université Catholique de Louvain in Belgium.

The study was funded by the Natural Sciences and Engineering Research Council of Canada, the Canadian Institutes of Health Research, the National Institutes of Health, the National Science Foundation and the Belgian American Educational Foundation.

Story Source:

The above story is reprinted (with editorial adaptations by ScienceDaily staff) from materials provided by University of California — Berkeley.

Journal Reference:

Flavio T. P. Oliveira, Jörn Diedrichsen, Timothy Verstynen, Julie Duque, Richard B. Ivry. Transcranial magnetic stimulation of posterior parietal cortex affects decisions of hand choice. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.1006223107

Right and Left Brain

October 26, 2010 Leave a comment

The brain is divided physically into a left and right half is not a new discovery. The Egyptians knew that the left side of the brain controlled and received sensations from the right side of the body and vice versa.

It is only in the last two dozen years, however, that the true implication of the left/right split has gradually become apparent, through the work of a number of researchers. The most famous are probably Dr. Roger Sperry and Dr. Robert Ornstein of the California Institute of Technology. Their work has won them a Nobel prize.

Sperry and Ornstein noted that the left and the rig hemispheres are connected by an incredibly complex network of up to 300 million nerve fibres called the Corpus callosum. They were also able to show that the two halves of the brain tend to have different functions.

They (and other researchers) indicate that the left brain primarily appears to deal with language and mathematical processes and logical thought, sequences, analysis and what we generally label academic pursuits. The right brain principally deals with music, and visual impressions, pictures, spatial patterns, and colour recognition. They also ascribe to the right brain the ability to deal with certain kinds of conceptual thought – intangible ‘ideas’ such as love, loyalty, beauty.

The specialization of the two halves of the brain can result in some bizarre behaviour. Patients who, for medical reasons, have had their Corpus callosum severed, have effectively two semi-independent brains: two minds in one head.

If a ball is shown to the left visual field of such a person, i.e. registered to their right brain hemisphere, the speaking half of the brain, which is in the other, (left) brain will claim to have seen nothing. If, however, the patient is asked to feel in a bag of assorted shapes he will correctly pull out a ball. If he is asked what he has done he will say ‘nothing’. The ball has only been seen with the right brain, and felt with the right brain. The speech centre, which is located in the left brain, has registered nothing.

Even more delicate experiments have been performed on surgically split-brained patients. The word SINBAD was projected to such a patient while his eyes were focused on the precise spot between N and B. The first 3 letters went to his right brain, the last three to his left hemisphere. When asked to saywhat he had seen, he replied BAD. When asked to point with his left hand to what he had seen he pointed to the word SIN.

The specialisation of the two brains has also been demonstrated by measuring the electrical activity of the brain during various activities.

When the brain is relaxed in a state of rest, it tends predominantly to show an alpha brain wave rhythm – i.e. 8-12Hz waves. Ornstein found that a subject tackling a mathematical problem showed an increase in alpha in the right hemisphere. This indicated that the right side was relaxing whilst the left was active and, therefore, in a beta brain wave pattern. In contrast, when a subject was matching coloured patterns, the left showed alpha (i.e. was resting) and the right showed beta (i.e. was active).

The brain scans, show the varying levels of electrical brain activity in a subject listening to music, words and singing. The first activity (music) involved the right brain. The second (listening to words only) involved the left brain, but singing (words and music together) involved the whole brain.

The left brain is now thought to be the half that specialises in serial, sequential thought, i.e. analysing information in sequence in a ”logical” step by step approach. The left rationalises. The right brain seems to take in several bits of information ”at a glance” and process them into one overall thought. The right synthesises.

When you meet someone it seems to be the right brain that takes all the elements at once and synthesises the pattern into a whole to recognise the person instantaneously. If you were using your left brain only you would probably scan first the hair, then the forehead, then the eyes, nose, mouth and chin in sequence to ”build up” a picture. The right brain, however, recognises the pattern immediately.

It is the left brain that is dominant in, for example, mathematical calculations. It is the right brain that processes non-verbal signals.

We have come as a society to stress, and value more highly, the functions of the left brain. The analytical thinking of the physicist is usually valued higher (in money terms) than the artistic and intuitive ability of the musician or artist. Most schools relegate right brain dominant activities to two or three periods a week. Yet those schools who have tried increasing the proportion of arts subjects, have found that levels of all scholastic performance improved. Because, although the two halves of the brain may indeed be specialised, they are far from being isolated. Each compliments and improves the performance of the other.

Education that emphasises only analytical thinking is literally ”single minded”. As one psychologist put it »Such people’s brains are being systematically damaged. In many ways they are being de-educated.«

Source: http://www.SourceOfOrigin.com