Archive

Posts Tagged ‘ebola’

Source 3: Protein Essential for Ebola Virus Infection Is a Promising Antiviral Target

September 30, 2012 Leave a comment

In separate papers published online in Nature, two research teams report identifying a critical protein that Ebola virus exploits to cause deadly infections. The protein target is an essential element through which the virus enters living cells to cause disease.

The first study was led by four senior scientists: Sean Whelan, associate professor of microbiology and immunobiology at Harvard Medical School; Kartik Chandran, assistant professor at Albert Einstein College of Medicine; John Dye at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) and Thijn Brummelkamp, originally at the Whitehead Institute for Biomedical Research and now at the Netherlands Cancer Institute. The second study was led by James Cunningham, a Harvard Medical School associate professor of medicine at Brigham and Women’s Hospital, and also co-authored by Chandran.

“This research identifies a critical cellular protein that the Ebola virus needs to cause infection and disease,” explained Whelan, who is also co-director of the HMS Program in Virology. “The discovery also improves chances that drugs can be developed that directly combat Ebola infections.”

Both papers are published in the August 24 online issue of Nature.

The African Ebola virus — and its cousin, Marburg virus — are known as the filoviruses. Widely considered one of the most dangerous infections known, Ebola was first identified in 1976 in Africa near the Ebola River, an area in Sudan and the Democratic Republic of the Congo. Infections cause severe hemorrhage, multiple organ failure and death. No one quite knows how the virus is spread, and there are no available vaccines or anti-viral drugs that can fight the infections.

Through conducting a genome-wide genetic screen in human cells aimed at identifying molecules essential for Ebola’s virulence, Whelan and his colleagues homed in on Niemann-Pick C1 (NPC1).

NPC1 has been well known in the biomedical literature. Primarily associated with cholesterol metabolism, this protein, when mutated, causes a rare genetic disorder in children, Niemann-Pick disease.

Using cells derived from these patients, the group found that this mutant form of NPC1 also completely blocks infection by the Ebola virus. They also demonstrated that mice carrying a mutation in the NPC1 gene resisted Ebola infection. Similar resistance was found in cultured cells in which the normal molecular structure of the Niemann-Pick protein has been altered.

In other words, targeting NPC1 has real therapeutic potential. While such a treatment may also block the cholesterol transport pathway, short-term treatment would likely be tolerated.

Indeed in the accompanying paper, Cunningham’s group describes such a potential inhibitor.

Cunningham and his group at Brigham and Women’s Hospital investigated Ebola by using a robotic method developed by their colleagues at the National Small Molecule Screening Laboratory at Harvard Medical School to screen tens of thousands of compounds. The team identified a novel small molecule that inhibits Ebola virus entry into cells by more than 99 percent.

The team then used the inhibitor as a probe to investigate the Ebola infection pathway and found that the inhibitor targeted NPC1.

For Cunningham and Chandran, this finding builds on a 2005 paper of theirs for which Whelan was also a collaborator. In that study, he and his group discovered how Ebola exploits a protein called cathepsin B. This new study completes the puzzle. It now seems that cathepsin B interacts with Ebola in a way that preps it to subsequently bind with NPC1.

“It is interesting that NPC1 is critical for the uptake of cholesterol into cells, which is an indication of how the virus exploits normal cell processes to grow and spread,” said Cunningham. “Small molecules that target NPC1 and inhibit Ebola virus infection have the potential to be developed into anti-viral drugs.”

The paper coauthored by Whelan was funded by the U.S. National Institute of Allergy and Infectious Diseases and the National Human Genome Research Institute, the U.S. Army, and the Burroughs Wellcome Foundation. Cunningham’s work was funded by the New England Regional Center of Excellence for Biodefense and Emerging Infectious Diseases at Harvard Medical School.

Story Source:

The above story is reprinted from materials provided by Harvard Medical School, via ScienceDaily. The original article was written by Robert Cooke and Lori Shanks.

Journal References:

  • Jan E. Carette, Matthijs Raaben, Anthony C. Wong, Andrew S. Herbert, Gregor Obernosterer, Nirupama Mulherkar, Ana I. Kuehne, Philip J. Kranzusch, April M. Griffin, Gordon Ruthel, Paola Dal Cin, John M. Dye, Sean P. Whelan, Kartik Chandran, Thijn R. Brummelkamp. Ebola virus entry requires the cholesterol transporter Niemann–Pick C1. Nature, 2011; DOI: 10.1038/nature10348
  • Marceline Côté, John Misasi, Tao Ren, Anna Bruchez, Kyungae Lee, Claire Marie Filone, Lisa Hensley, Qi Li, Daniel Ory, Kartik Chandran, James Cunningham. Small molecule inhibitors reveal Niemann–Pick C1 is essential for Ebola virus infection. Nature, 2011; DOI: 10.1038/nature10380

Source 2: Scientists Identify Point of Entry for Deadly Ebola Virus

September 30, 2012 Leave a comment

Ebola virus, the cause of Ebola hemorrhagic fever (EHF), is one of the deadliest known viruses affecting humans. Like anthrax and smallpox virus, Ebola virus is classified by the U.S. Centers for Disease Control and Prevention (CDC) as a category A bioterrorism agent. Currently, there is no vaccine to prevent EHF, and patients are treated only for their symptoms.Although outbreaks are rare, Ebola virus, the cause of Ebola hemorrhagic fever (EHF), is one of the deadliest known viruses affecting humans. According to the World Health Organization (WHO), approximately 1,850 EHF cases with more than 1,200 deaths have been documented since the virus was identified in 1976.

This negatively-stained transmission electron micrograph (TEM) revealed some of the ultrastructural curvilinear morphologic features displayed by the Ebola virus discovered from the Ivory Coast of Africa. (Credit: Charles Humphrey). (up)

EHF’s clinical presentation can be devastating: fever, intense weakness, and joint and muscle aches progress to diarrhea, vomiting, and in some cases, internal and external bleeding caused by disintegrating blood vessels. Currently, there is no approved vaccine and patients are treated only for their symptoms. Like anthrax and smallpox virus, Ebola virus is classified as a category A bioterrorism agent by the U.S. Centers for Disease Control and Prevention (CDC).

Until now, however, researchers had only a limited understanding of how Ebola virus gains entry to a host cell.

Using an unusual human cell line, Whitehead Institute scientists and collaborators from Harvard Medical School, Albert Einstein College of Medicine and U.S. Army Medical Research Institute of Infectious Diseases, have identified the Niemann-Pick C1 (NPC1) protein as crucial for Ebola virus to enter cells and begin replicating. The discovery may offer a new and better approach for the development of antiviral therapeutics, as it would target a structure in the host cell rather than a viral component.

The findings are reported online in Nature this week.

Where all of us inherit one copy of each chromosome from each of our two parents, cell lines exist with only a single set, and thus with a single copy of each individual gene, instead of the usual two. Using an unusual human cell line of this type, Whitehead Institute researchers and their collaborators performed a genetic screen and identified a protein used by Ebola virus to gain entry into cells and begin replicating. The discovery may offer a new approach for the development of antiviral therapeutics.

“Right now, people make therapeutics to inactivate the pathogen itself. But the problem is that pathogens can quickly change and escape detection and elimination by the immune system,” says former Whitehead Fellow Thijn Brummelkamp, now a group leader at the Netherlands Cancer Institute (NKI). “Here we get a good idea of the host genes that are needed for the pathogen to enter the cell for replication. Perhaps by generating therapeutics against those host factors, we would have a more stable target for antiviral drugs.”

The method developed by the Brummelkamp lab to identify host factors relies on gene disruption — knocking out gene function in the host cells, one gene at a time — and documenting which cells survive due to mutations that afford protection from viral entry.

But human cells are diploid with two copies of each chromosome and its genes. Researchers can reliably target and knock out one copy of a gene, but doing so for both copies is far more difficult and time-consuming. If only a single copy is silenced, the other continues to function normally and masks any effect of the knockout.

To sidestep this obstacle, Jan Carette, a first co-author on the Nature paper and a former postdoctoral researcher in the Brummelkamp lab, employed a technique he had previously applied to study the cytolethal distending toxin (CDT) family that is secreted by multiple pathogenic bacteria, including Escherichia coli, Shigella dysenteriae, and Haemophilus ducreyi. Each bacterial species has developed its own twists on the CDT structure, which may link to the target tissues of the toxin’s bacterium.

In his CDT work published in Nature Biotechnology, Carette together with co-lead authors of Whitehead Member Hidde Ploegh’s lab, used a line of haploid cells isolated from a chronic myeloid leukemia (CML) patient. Because these cells, called KBM7 cells, have only one copy of each chromosome except chromosome 8, the researchers could disrupt the expression of each gene and screen for mutants with the desired properties, in this case survival of a lethal dose of toxin.

After knocking out individual genes by disrupting the normal structure of the gene, the resulting mutant KBM7 cells were exposed to various CDTs. In the cells that survived, Carette and coauthors knew that genes that had been disrupted were somehow crucial to CDT intoxication. By analyzing the surviving cell’s genomes, Carette and coauthors identified ten human proteins that are used by CDTs during intoxication, and those host factors seem to be tailored to each CDT’s targeted cell.

“I found it surprising that there is quite some specificity in the entry routes for each toxin,” says Carette. “If you take CDTs that are very similar to each other in structure, you could still see significant differences in the host factors they require to do their job. So it seems that every pathogen evolved a specific and unique way of its toxin entering the cells.”

To study Ebola virus, Carette and co-lead authors from Harvard Medical School and the Albert Einstein College of Medicine made use of an otherwise harmless virus cloaked in the Ebola virus glycoprotein coat. Using this virus and by altering the haploid cells somewhat, Carette and coauthors were able to pinpoint the cellular genes that Ebola virus relies on to enter the cell.

Carette and coauthors identified as necessary for Ebola virus entry several genes involved in organelles that transport and recycle proteins. One gene in particular stood out, NPC1, which codes for a cholesterol transport protein, and is necessary for the virus to enter the cell’s cytoplasm for replication. Mutations in this gene cause a form of Niemann-Pick disease, an ultimately fatal neurological disorder diagnosed mainly in children.

Collaborators at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) tested the effects of active Ebola virus on mice that had one copy of the NPC1 gene knocked out. Control mice, with two functioning copies of the NPC1 gene, quickly succumbed to infection, while the NPC1 knockout mice were largely protected from the virus.

“This is pretty unexpected,” says Carette, who is currently an Acting Assistant Professor in Microbiology & Immunology at Stanford School of Medicine. “This might imply that genetic mutations in the NPC1 gene in humans could make some people resistant to this very deadly virus. And now that we know that NPC1 is an Ebola virus host factor, it provides a strong platform from which to start developing new antivirals.”

This research was supported by the National Institutes of Health (NIH), the U.S. Army, Boehringer Ingelheim Fonds and a Burroughs Wellcome Award.

Story Source:

The above story is reprinted from materials provided by Whitehead Institute for Biomedical Research, via ScienceDaily. The original article was written by Nicole Giese.

Journal References:

  • Jan E. Carette, Matthijs Raaben, Anthony C. Wong, Andrew S. Herbert, Gregor Obernosterer, Nirupama Mulherkar, Ana I. Kuehne, Philip J. Kranzusch, April M. Griffin, Gordon Ruthel, Paola Dal Cin, John M. Dye, Sean P. Whelan, Kartik Chandran, Thijn R. Brummelkamp. Ebola virus entry requires the cholesterol transporter Niemann–Pick C1. Nature, 2011; DOI: 10.1038/nature10348
  • Jan E Carette, Carla P Guimaraes, Irene Wuethrich, Vincent A Blomen, Malini Varadarajan, Chong Sun, George Bell, Bingbing Yuan, Markus K Muellner, Sebastian M Nijman, Hidde L Ploegh, Thijn R Brummelkamp. Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nature Biotechnology, 2011; 29 (6): 542 DOI: 10.1038/nbt.1857

Source 1: Researchers Find ‘Key’ Used by Ebola Virus to Unlock Cells and Spread Deadly Infection

September 30, 2012 Leave a comment

Researchers at Albert Einstein College of Medicine of Yeshiva University have helped identify a cellular protein that is critical for infection by the deadly Ebola virus. The findings, published in the August 24 online edition of Nature, suggest a possible strategy for blocking infection due to Ebola virus, one of the world’s most lethal viruses and a potential bioterrorism agent.

The study was a collaborative effort involving scientists from Einstein, the Whitehead Institute for Biomedical Research, Harvard Medical School, and the U.S. Army Medical Research Institute of Infectious Diseases

Ebola virus is notorious for killing up to 90 percent of the people it infects. Ebola hemorrhagic fever — the severe, usually fatal disease that Ebola virus causes in humans and in nonhuman primates — first emerged in 1976 in villages along the Ebola River in the Sudan and the Democratic Republic of the Congo, Africa. Since then, about two dozen outbreaks have occurred.

This drawing illustrates the sequence of events from the time the Ebola virus first enters the host cell (top) until the virus gains its release into the cytoplasm, where it can multiply (bottom). Researchers have shown that Ebola exists in the lysosome and enters the cytoplasm by interacting with NPC1 protein molecules (orange) embedded in the lysosomal membrane. (Credit: Image courtesy of Albert Einstein College of Medicine) (right)

Though Ebola and Marburg hemorrhagic fevers are fortunately rare diseases, “even small outbreaks of Ebola or Marburg virus can cause fear and panic,” said co-senior author Kartik Chandran, Ph.D., assistant professor of microbiology & immunology at Einstein “And then there’s the worry that these viruses could be used for bioterrorism.”

Ebola virus’s ability to enter cells is reminiscent of the Trojan Horse used by the ancient Greeks to defeat their archenemies. Ebola virus binds to the host cell’s outer membrane, and a portion of host cell membrane then surrounds the virus and pinches off, creating an endosome — a membrane-bound bubble inside the cell (see image). Endosomes carry their viral stowaways deep within the cell and eventually mature into lysosomes — tiny enzyme-filled structures that digest and recycle cellular debris.

The viruses captive in the lysosome manage to escape destruction by exploiting components of the cell to gain entry to the cytoplasm, the substance between the cell membrane and the nucleus where the virus can replicate. But the identities of many of these components have remained unknown.

In seeking the answer, Einstein researchers and colleagues searched for proteins that Ebola virus might exploit to enter the cell’s cytoplasm. One such cellular protein, known as Niemann-Pick C1 (NPC1), stood out.

“We found that if your cells don’t make this protein, they cannot be infected by Ebola virus,” said Dr. Chandran. “Obviously it’s very early days, but we think our discovery has created a real therapeutic opportunity.” At present, there are no drugs available to treat people who have been infected with Ebola virus or approved vaccines to prevent illness.”

The NPC1 protein is embedded within cell membranes, where it helps transport cholesterol within the cell. However, the absence of NPC1 due to gene mutations causes a rare degenerative disorder called Niemann-Pick disease, in which cells become clogged up with cholesterol and eventually die.

To confirm their finding that NPC1 is crucial for Ebola virus infection, the researchers challenged mice carrying a mutation in NPC1 with Ebola virus. Remarkably, most of these mutant mice survived the challenge with this normally deadly virus. Similarly, fibroblast cells (found in connective tissue) from people with Niemann-Pick disease were resistant to Ebola virus infection, as were human cells from other organs that were manipulated to reduce the amount of NPC1 they contained.

The researchers also tested whether other major viruses need NPC1 to infect human cells. Only Ebola virus and its close relative, Marburg virus, were found to require the presence of NPC1 protein for infection. Like Ebola virus, Marburg virus also needs NPC1 to kill mice.

“Our work suggests that these viruses need NPC1, which is embedded in the lysosomal membrane, to escape from the lysosome into the cytoplasm,” said Dr. Chandran. “We are now testing that hypothesis in the laboratory.”

The discovery of NPC1’s crucial role in Ebola infection raises the possibility that Ebola and Marburg virus outbreaks could be thwarted by a drug that blocks the action of NPC1. “Even though such a treatment would also block the cholesterol transport pathway, we think it would be tolerable,” said Dr. Chandran. “Most outbreaks are short-lived, so treatment would be needed for only a short time.” Einstein, in conjunction with the Whitehead Institute of Biomedical Research and Harvard Medical School, has filed a patent application related to this research that is available for licensing to partners interested in further developing and commercializing this technology.

Remarkably, an anti-Ebola virus inhibitor Dr. Chandran found as a postdoctoral fellow at the Brigham and Women’s Hospital in Boston, MA turns out to be just such an NPC1 blocker, as described in a separate manuscript by Côté and co-workers to be published in the same issue of Nature.

Story Source:

The above story is reprinted from materials provided by Albert Einstein College of Medicine, via ScienceDaily.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:

Jan E. Carette, Matthijs Raaben, Anthony C. Wong, Andrew S. Herbert, Gregor Obernosterer, Nirupama Mulherkar, Ana I. Kuehne, Philip J. Kranzusch, April M. Griffin, Gordon Ruthel, Paola Dal Cin, John M. Dye, Sean P. Whelan, Kartik Chandran, Thijn R. Brummelkamp. Ebola virus entry requires the cholesterol transporter Niemann–Pick C1. Nature, 2011; DOI: 10.1038/nature10348

How Deadly Marburg Virus Silences Immune System: Breakthrough Findings Point to Targets for Drugs and Vaccines

September 30, 2012 Leave a comment

Scientists at The Scripps Research Institute have determined the structure of a critical protein from the Marburg virus, a close cousin of Ebola virus. These viruses cause similar diseases and are some of the deadliest pathogens on the planet, each killing up to 90 percent of those infected.

The Marburg virus VP35 protein (beige) surrounds the virus’s double-stranded RNA (blue), masking it from immune system detection. (Credit: Image by Christina Corbaci, The Scripps Research Institute) (up)

Described in the Sept. 13, 2012 publication of the journal PLoS Pathogens, the new research reveals how a key protein component of the Marburg virus, called VP35, blocks the human immune system, allowing the virus to grow unchecked. The structure provides a major step forward in understanding how the deadly virus works, and may be useful in the development of potential treatments for those infected.

“The immune system is designed to recognize certain hallmarks of virus infection,” said Erica Ollmann Saphire, the Scripps Research scientist who led the effort. “When these are sensed, an immediate antiviral defense is launched. However, the Marburg and Ebola viruses mask the evidence of their own infection. By doing so, the viruses are able to replicate rapidly and overwhelm the patient’s ability to launch an effective defense.”

Deadly Outbreaks

Ebola virus outbreaks have occurred in the last month in both Uganda and the Democratic Republic of the Congo, while Marburg virus broke out in Angola in 2005 to 2006 and again in Uganda in 2007. The Angolan Marburg virus outbreak began in a pediatric ward and killed 88 percent of those it infected. The virus has since been imported into the United States (Colorado) and the Netherlands by tourists who had visited Africa.

There is currently no cure for Marburg hemorrhagic fever. The virus is spread when people come into contact with the bodily fluids of a person or animal who is already infected. The best treatment consists of administering fluids and taking protective measures to ensure containment, like isolating the patient and washing sheets with bleach.

Most people, however, die within two weeks of exposure from a combination of dehydration, massive bleeding, and shock. A smaller number of people have stronger and immediate immune responses against the virus and survive.

A New Roadmap for Defense

The breakthrough described in the PLoS Pathogens article explains a key reason why the viruses are so deadly and provides the necessary templates to develop drugs to treat the infection.

The study’s lead author, Research Associate Shridhar Bale, explains that a key signature of Marburg virus infection is the double-stranded RNA that results from its replication inside cells. When human immune system proteins detect this virus-specific RNA, they sound an alarm to signal the rest of the immune system to respond. The new research describes how the VP35 protein of the Marburg virus binds to the viral double-stranded RNA and hides it to prevent the alarm from being sounded.

The new research also revealed a surprise. Images from the Marburg virus reveal the VP35 protein spirals around the double-stranded RNA, enveloping it completely. This is in contrast to previous images of the similar VP35 protein from Ebola virus that showed it only capping the ends of the RNA, leaving the center of the RNA helix exposed for possible recognition.

In addition to Ollmann Saphire and Bale, the article, “Marburg virus VP35 can both fully coat the backbone and cap the ends of dsRNA for interferon antagonism,” was authored by Jean-Philippe Julien, Zachary A. Bornholdt, Michelle A. Zandonatti, Gerard J.A. Kroon, Christopher R. Kimberlin, Ian J. MacRae, and Ian A. Wilson of The Scripps Research Institute, and Peter Halfmann, John Kunert, and Yoshihiro Kawaoka of the University of Wisconsin.

Support for the research was provided by grants from the Burroughs Wellcome Fund and The Skaggs Institute for Chemical Biology at Scripps Research.

Source:

The above story is reprinted from materials provided by Scripps Research Institute, via ScienceDaily

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:

Bale S, Julien J-P, Bornholdt ZA, Kimberlin CR, Halfmann P, et al. Marburg Virus VP35 Can Both Fully Coat the Backbone and Cap the Ends of dsRNA for Interferon Antagonism. PLoS Pathog. PLoS Pathogens, 2012; 8(9): e1002916 DOI: 10.1371/journal.ppat.1002916

Novartis Cancer Drugs Fight Deadly Ebola Virus in Lab, Researchers Find

April 23, 2012 Leave a comment

Two Novartis AG leukemia drugs, Gleevec and Tasigna, fought the deadly Ebola virus in laboratory experiments, suggesting the products could be used against a disease for which there are no treatments.

The two medicines stopped the release of viral particles from infected cells in lab dishes, a step that in a person may prevent Ebola from spreading in the body and give the immune system time to control it, researchers from the U.S. National Institute of Allergy and Infectious Diseases wrote in the journal Science Translational Medicine today.

There’s no cure and no vaccine for Ebola, a virus that causes high fever, diarrhea, vomiting and internal and external bleeding. Death can ensue within days, and outbreaks in Africa have recorded fatality rates of as much as 90 percent, according to the World Health Organization.

In some forms of leukemia, Gleevec and Tasigna reduce levels of a protein called Bcr-Abl that causes malignant white blood cells to multiply.

The researchers found that Ebola uses a related protein called c-Abl1 tyrosine kinase to regulate its own reproduction. They showed that by blocking c-Abl1, Tasigna may reduce the pathogen’s ability to replicate by as much as 10,000-fold. In addition to showing how the two drugs might be used to treat infected patients, the findings also suggest that new medicines could be developed to target c-Abl1, they wrote.

Gleevec and Tasigna, also known as imatinib and nilotinib, earned Basel, Switzerland-based Novartis a combined $5.45 billion in sales last year. Gleevec is sold as Glivec outside the U.S.

Source: Yahoo! Health

Cancer Drugs Could Halt Ebola Virus

April 23, 2012 Leave a comment

Some cancer drugs used to treat patients with leukemia may also help stop the Ebola virus and give the body time to control the infection before it turns deadly, US researchers said on Wednesday.

The much-feared Ebola virus emerged in Africa in the 1970s and can incite a hemorrhagic fever which causes a person to bleed to death in up to 90 percent of cases.

While rare, the Ebola virus is considered a potential weapon for bioterrorists because it is so highly contagious, so lethal and has no standard treatment.

But a pair of well-known drugs that have been used to treat leukemia — known as nilotinib and imatinib — appear to have some success in stopping the virus from replicating in human cells.

Lead researcher Mayra Garcia of the US National Institute of Allergy and Infectious Diseases and colleagues reported their finding in Wednesday’s edition of the journal Science Translational Medicine.

By experimenting with human embryonic kidney cells in a lab, they found that a protein called c-Abl1 tyrosine kinase was a key regulator in whether the Ebola virus could replicate or not.

The leukemia drugs work by stopping that protein’s activity. In turn, a viral protein called VP40 stopped the release of viral particles from the infected cells, a process known as filovirus budding.

“Drugs that target filovirus budding would be expected to reduce the spread of infection, giving the immune system time to control the infection,” the study authors wrote.

“Our results suggest that short-term administration of nilotinib or imatinib may be useful in treating Ebola virus infections.”

Imatinib, which is marketed as Gleevec and Glivec, is used to treat chronic myelogenous leukemia in humans, a disease which is caused by dysregulation of c-Abl enzyme.

Nilotinib, also known as Tasigna, has been used in chronic myelogenous leukemia patients who are resistant to imatinib.

Both “have reasonable safety profiles, although some cardiac toxicity has been reported with long-term administration in a small number of patients,” the study added.

According to the UN’s World Health Organization (WHO), about 1,850 cases of Ebola, with some 1,200 deaths, have occurred since 1976.

The virus has a natural reservoir in several species of African fruit bat. Gorillas and other non-human primates are also susceptible to the disease.

Source: Bloomberg

Cancer Drugs Thwart Ebola In Lab

April 23, 2012 2 comments

The Ebola virus causes a hemorrhagic fever that can be deadly. (up)

Ebola is one virus you never want to catch. Ever.

After some aches and a fever, many infected people develop uncontrolled bleeding. The mortality rates from Ebola infection can run as high as 90 percent.

There’s no cure for Ebola. But a group of scientists is exploring whether some drugs already approved to treat cancer might help tame the virus.

Sounds wild. But there’s a reason — and now some evidence — to think it might work.

To reproduce, the Ebola virus needs the help of cells it invades. And a couple of cancer drugs tweak a human protein that new copies of the virus use to leave their host cells so they can infect others.

The tested drugs — Gleevec and Tasigna, both sold by Novartis — are called tyrosine kinase inhibitors. Tyrosine kinases are enzymes that put a phosphate group on a particular amino acid. Amino acids, as you might remember from high school biology, are the building blocks of proteins.

When a phosphate group gets attached to the right tyrosine block on the right protein, it changes the shape and function of the protein. And that might change everything when it comes to Ebola.

“Proteins are like little machines,” says Emory University’s Dan Kalman, one of the researchers. “As with a machine, they can be turned or turned off. The switch for turning things on or off is a modification. And one of those modifications is a phosphate group.”

In some cancers, the tyrosine kinases help trigger the uncontrolled division of cells. Gleevec and Tasigna help stop that.

When it comes to Ebola, the researchers think drugs like these could turn off a transport protein and could keep new viruses bottled up inside cells.

The Ebola lab work using collections of human cells was published in the latest issue of Science Translational Medicine. It showed that the drugs dramatically decrease the ability of Ebola to replicate. “The effect was quite pronounced,” Kalman told Shots.

And, if the theory holds, such a reduction might be enough to allow an infected person’s immune system to mop up the Ebola viruses.

“Ebola is a very nasty infection,” Kalman says. “The whole concept of containing the disease in a local group before it spreads all over the planet is something clearly we want to do.”

The next step will be to see if the drugs can make a difference in animal experiments.

Source: npr.org

Top 10 Infectious Diseases That Have Killed Millions of People


The discovery of the antibiotics by the middle of the 20th century seemed to have doomed the human pathogens. They proved effective against many bacteria and fungi causing hospital infections, like meningitis, pneumonia and scarlet fever, which before were deadly. But antibiotics cannot attack viruses, like HIV or flu virus; many cause allergies and kill many beneficial microorganisms.

The under use of antibiotics (when a patient does not complete treatment because he/she feels better) cause the emergence of resistant strains, as not all the bacteria are killed. Their abuse is also harmful. In livestock they induce an accelerated growth, and this cause an increase in the microbial resistance. This can leave us without antibiotics.

Massive vaccination campaigns eliminated to the end of the 20th century smallpox and today polio leave paralyzed less than 1,000 children annually (in 1988 more than 1,000 per day), and has remained active in less than 10 countries. Sanitation has eliminated cholera, whose bacterium is transmitted through infested water, from many places. Better food, life style, medical care and laws controlling food manipulation have reduced infection diseases in many places.

In the 21st century, there are still infections against which we are defenseless and which, despite all the medical advances, bringing advantages more to developed nations, still kill millions of people every year. Poverty, war, hunger, lack of health infrastructure and sanitation, immigration, trade, globalization contribute to the spread of the diseases. In the last years, outbreaks of ebola, cholera, pest, meningitis, SARS and bird flu have been witnessed. These are infectious diseases that have produced and produce a lot of victims around the world.

 

1.Black Plague

(also called bubonic plague) outbroke in Europe in 1347, when a boat coming from Crimea docked at Mesina, Sicily. Besides its load, the ship transported the pest, which soon spread throughout whole Italy. It was like the end of the days for Europe. In four years, this bacterium killed 20 to 30 million Europeans, about one third of the continent’s population. Even the remote Iceland was struck. In the Extreme East, China dwindled from 123 million inhabitants at the beginning of the 13th century to just 65 million during the 14th century, because of the pest and the hunger.

The pest bacterium is transmitted by fleas and usually, the infection jump from rats to humans.

This catastrophe has not match in the human history. 25 to 50 % of the inhabitants of Europe, North Africa and certain Asian areas died then.

Knowing the cause of the pandemic helped: in 1907 an outbreak of bubonic plague in San Francisco produced just several victims, as the authorities started a massive campaign for exterminating the rats, while in 1896 an outbreak in India caused 10 million dead in 12 years, as the cause was not known.

 

2. Smallpox

Americas escaped of the Black Death because of the isolation. But when discovered, the smallpox struck. In 1518 an outbreak of smallpox in the Haiti island left just 1,000 of the Native Indians. 100 years after the discovery of America by Columbus, 90 % of its native population have died of smallpox. Mexico passed from 30 million to 3 million inhabitants, Peru from 8 million to 1 million.

About 1,600, when the first European colonists reached Massachusetts, found it practically uninhabited, as smallpox had killed almost all local Indians.

It is believed that along the history, smallpox killed more humans that all the wars of the 20th century together. Since 1914 to 1977 smallpox killed 300 to 500 million people. By 1970, smallpox still killed 2 million people annually, but OMS managed to eradicate the diseases through vaccination and in the last case was found in Somalia, in 1977. This was possible because smallpox transmits only from human to human. At the time of eradication, no effective cure was known against smallpox.

The first ever vaccine was created in 1798 by Edward Jenner and was against smallpox.

3. Leishmaniosis

infects 2 million people annually and about 12 million diseased are found worldwide, mostly adult men. It is produced by a protozoa (Leishmania) that spreads through the bite of the sand flies (Phlebotomus).

The most severe type is “kala azar” (“black fever” in Hindu), which infects 0.5 million people, and incubation lasts some weeks. The parasite induces skin ulcers which extend all over the body and can produce obstructions or nasal hemorrhage.

It causes severe lesions on the legs and a temporary or definitive physical disability.

Kala azar swells the spleen and the liver and attacks the bony marrow and linph nodules. Without treatment, the parasite kills 75-95 % of the patients.

It is found mainly in Africa, China, India, Latin America, and outbreaks occur sometimes in Mexico and the US.

The best drug is Pentostam. Intravenous Amphotericin B is effective, like the Pendamidine, but there is no vaccine yet.

 

4. Malaria

is found in 500 million people (!) and is caused by a protozoa spread by the female of the Anopheles mosquito. 300 million of these cases are severe. In the east African villages, children are bitten by the Anopheles mosquitoes carrying malaria 50-80 times a month.

It triggers fever, shivering, abundant sweating, articulation pains, severe headache, vomit and extreme weakness, so that the diseased cannot even cry.

Annually, 1.5 million people die of malaria (one million in Africa South of Sahara), a child every 30 seconds. About 120 million people died of malaria since 1914, and the disease is endemic in 101 countries, mainly tropical, in Africa, Asia and America.

It spreads during the rainy season, when the mosquitoes breed. Quinine extracted from the bark of the South American cinchona tree saved millions of malaria diseased. Many treatments have been developed (mefloquine, Halofantrine, Artemisia products) but none has a total effectiveness, as the parasite constantly mutates, and there is no vaccine.

 

5. Gonorrhea and syphilis

are triggered by two bacteria (Neisseria and Treponema pallida) and are transmitted sexually.

62 million people worldwide are affected, aged mainly 15 to 29 years, all over the planet, especially in urban areas and of low socioeconomic level.

In man, gonorrhea produces urinary incontinence, urethra pain, reddening, penis burning sensation and testicle inflammation. In women, it induces severe pain which reaches the trumps and uterus.

Syphilis induces ulcered lesion (syphilis chancre) at the entrance site. After that, it triggers skin eruptions, fever, hair loss, less severe hepatitis and gential condilloms, but if untreated, the lesions extend to the nervous system, leading to death.

The treatment consists in extremely powerful antibiotics (ceftriaxone, Cefixime, and others) which are also extremely costly.

 

6. Pneumonia

affects 1 % of the planet’s population and can be produced by viruses or bacteria (like Aeromonas hydrophila).

It produces fever, shiver, sweating, cough with expectoration, muscle, head and thoracic pain, appetite loss, weakness.

This is the main cause of mortality in the world: it kills 3.5 million people each year. It attacks especially patients with severe immunodepression, those that follow chemotherapy, people who are older than 75, asthmatics, smokers, alcoholics, those with renal insufficiency and children under 2 years of age. It affects especially the poor countries.

Antibiotics work in the case of the bacteria. Therapy includes oxygen, liquids, and physiotherapy.

Patients with a simple pneumonia can cure in 2-3 weeks, but elders or those with debilitating diseases can die of respiratory or cardiorespiratory failure.

The vaccine trimetropin sulfamethoxazole is effective against the most frequent complications.

 

7. Sleeping sickness

is triggered by the Tripanosoma gambiense and T. rhodesiense, protozoans spread by the tse-tse fly (Glossina). The American variant, T cruzi, is spread by biting bugs and cause the disease called chagas.

The toxins of the parasites affect especially the central nervous system and the heart muscle. It manifests through fever, edemas, sleepiness, and meningitis.

It affects 60 million people, but only 4 million receive treatment, and it kills 150,000 people yearly.

It affects the livestock, being deadly or inducing low fertility, weight and productivity, with severe economical losses. It is found in the habitat of the tse-tse fly: over 10 million square km in 36 African countries. Chagas is found in certain areas of Central and South America.

DFMO, the effective drug, is already not produced. Currently, melarsoprol with arsenic are employed, fact that induces the death of up to 10 % of the patients. Vaccine exists only for the carrying livestock. There are also efforts to eliminate the flies in some areas.

 

8. Tuberculosis

is caused by the Koch bacterium. It is as old as the humankind. TBC was found even in mummies coming from the ancient Egypt and Peru. 2 million people die annually of tuberculosis. About 150 million people are estimated to have died of TBC since 1914.

One third of the people carry the Koch bacterium, which spreads through the air and affects all the body, especially the lungs. It induces prolonged coughing, fever, shivering, bloody expectoration, weight loss, sweating, tiresome, and glossy eyes.

It infects one third of the world population and each year another new 8 million cases appear. Each second a person dies of tuberculosis. It is more aggressive in women and persons between 15 and 45 years old. Mutant strains are resistant to almost all drugs and kill about 50 % of the patients.

It is worldwide spread, but its advance is rampant in Bangladesh, China, Indonesia, Philippines, India and Pakistan, with over half of the new cases.

TBC has a treatment, but it cannot be eradicated because of the emergence of multiresistant strains if the long and costly treatment, of over 6 months, is interrupted sooner than it should. 3-5 % of the new cases are coinfected with HIV.

The vaccine is effective in children, but useless in adults. Current employed drugs are isoniazid, ethambutol and Rifapentin.

 

9. AIDS

is estimated to be found in 46-60 million people and it’s produced by the human immunodeficiency virus (HIV), spread through blood, semen, and vaginal fluids. Some say the virus is still in an early stage.

The symptoms come rather late and start with exhaustion and fever. After that, ganglion inflammation appears along with persistent diarrhea, pneumonia and weight loss. In the final stage, the patient’s state is profoundly altered.

Each minute, five new persons get infected with HIV, and the virus kills young people, found in their productive period. It has killed 25 million people since 1981 and about 3.3 million people with HIV die annually. 68 million people could die between 2000-2020. Africa has lost 20 % of its labor power. Lifespan in Sub-Saharian Africa is now of 47 years old; without the AIDS it would have been 62.

In developed world, 58 % of the new cases are drug addicts who share syringes and 33 % through unprotected sexual contacts, but in undeveloped countries is mainly through unprotected sex and blood transfusions.

28 million of the HIV infected are found in Africa, and 0.5 million in West Europe; 300,000 in Eastern Europe, 600,000 in Eastern Asia and Oceania; 2.6 million in America (mostly South America).

Antiretrovirals can improve the immunity but its price is too costly for about 95 % of the infected. Only 4 % of the patients in the developing countries receive treatments. This treatment can cost 6-18,000 Euro ($ 8-25,000) and the virus will get resistance to drugs if the treatment is interrupted.

In pregnant women, antiretrovirals during the second and third trimesters of the pregnancy can avoid the child’s infection.

There is no vaccine, and the combination of up to four different drugs is the main principle in stopping the disease. These drugs keep the blood lymphocytes at normal levels, maintaining the virus latent but without its deadly ability.

 

10.Spanish flu

hit the world in 1918-1919 and killed over 30 million persons, soon after the First World War. Not even the bubonic plague had ever killed so rapidly so many persons. Typhus outbreaks use to accompany war conflicts. A huge typhus pandemic outbroke during the First World War in the eastern Europe. Since 1914, over 20 million people died of typhus.