Archive

Posts Tagged ‘heart’

Europe’s first non-beating heart transplant

March 26, 2015 1 comment

Surgeons in Cambridgeshire have performed the first heart transplant in Europe using a non-beating heart.

Donor hearts are usually from people who are brain-stem dead, but whose hearts are still beating. In this case, the organ came from a donor after their heart and lungs had stopped functioning, so-called circulatory death. Papworth hospital says the technique could increase the number of hearts available by at least 25%. The recipient Huseyin Ulucan, 60, from London, had a heart attack in 2008. He said: “Before the surgery, I could barely walk and I got out of breath very easily, I really had no quality of life.” He said he was “delighted” with the improvement in health since the transplant. “Now I’m feeling stronger every day, and I walked into the hospital this morning without any problem,” he said.

Shortage

There have been 171 heart transplant in the past 12 months in the UK. But demand exceeds supply, and some patients have to wait up to three years for a suitable organ. Many patients die before an organ becomes available. Non-beating-heart donors provide kidneys, livers and other organs, but until now it has not been possible to use the heart because of concerns it would suffer damage. The new procedure involved re-starting the heart in the donor five minutes after death and perfusing it and other vital organs with blood and nutrients at body temperature. The lead transplant surgeon, Stephen Large, said: “We had the heart beating for about 50 minutes, and by monitoring its function were able to tell that it was in very good condition.”

The organ was then removed and transferred to a heart-in-a-box machine, where it was kept nourished and beating for a further three hours before the transplant surgery at Papworth. The organ care system is also used for maintaining lung, liver and kidneys outside the body. The standard method for transporting hearts and other organs for transplant is to pack them in ice, but some organs can be damaged by this process. The Papworth team said that restoring the heartbeat after death and keeping the organ nourished had helped reduce damage in the heart muscle. Last year surgeons in Australia performed the world’s first transplant using a non-beating heart, also using the heart-in-a-box technology.

TransMedics, the US company that makes the organ care machine, said each unit cost £150,000 plus £25,000 per patient transplanted. Papworth and Harefield hospitals are the only two heart transplant units in the UK who use the device. Prof James Neuberger, associate medical director for organ donation and transplantation at NHS Blood and Transplant, said: “Sadly, there is a shortage of organs for transplant across the UK and patients die in need of an organ. “We hope Papworth’s work and similar work being developed elsewhere will result in more hearts being donated and more patients benefiting from a transplant in the future. “We are immensely grateful to the donor’s family, and we hope they are taking great comfort in knowing that their relative’s organs have saved lives and have also made an important contribution to heart transplantation in the UK.”

The above story is reprinted from materials provided by BBC News.

Advertisements

3D Model of Child’s Heart Helps Surgeons Save Life


A 14-month-old boy in need of life-saving heart surgery is the beneficiary of a collaboration among University of Louisville engineers, physicians and Kosair Children’s Hospital.

Roland Lian Cung Bawi of Owensboro was born with four congenital heart defects and his doctors were looking for greater insights into his condition prior to a Feb. 10 operation.

Philip Dydynski, chief of radiology at Kosair Children’s Hospital, recently had toured the Rapid Prototyping Center at the University of Louisville’s J.B. Speed School of Engineering and became impressed with the 3D printing capabilities available there.

He asked the center’s operations manager, Tim Gornet, if a 3D model of the child’s heart could be constructed using a template created by images from a CT scan to allow doctors to better plan and prepare for his surgery. No problem, Gornet said.

The result of the Rapid Prototyping Center’s work was a model heart 1.5 times the size of the child’s. It was built in three pieces using a flexible filament and required about 20 machine hours – and only about $600 — to make, Gornet said.

Once the model was built, Erle Austin III, cardiothoracic surgeon with University of Louisville Physicians, was able to develop a surgical plan and complete the heart repair with only one operation.

“I found the model to be a game changer in planning to do surgery on a complex congenital heart defect,” he said.

Roland was released from Kosair Children’s Hospital Feb. 14 and returned Feb. 21 for checkups with his doctors. His prognosis is good.

That’s good news for Gornet, whose work at the Rapid Prototyping Center routinely benefits manufacturers and heavy industry. Helping surgeons save a life was new territory for him.

“Knowing we can make somebody’s life better is exciting,” he said.

Here is also a short video:  UofL Engineers Construct 3D Heart Model

The above story is reprinted from materials provided by University of Louisville Today.

The Innervation of the Heart


An article on the innervation of the heart muscle.

A link to the article: The innervation of the Heart – click here

Initiation of the cardiac cycle is myogenic, originating in the sinuatrial node (SA). It is harmonizied in rate, force and output by autonomic nerves which operate on the nodal tissues and their prolongations, on coronary vessels and on the working atrial and ventricular musculature. All the cardiac branches of the N.vagus, X. cranial nerve, (parasympathetic) and all the sympathetic branches (except the cardiac branch of the superior cervical sympathetic ganglion) contain both afferent and efferent fibres; the cardiac branch of the superior cervical sympathetic ganglion is entirely efferent. Sympathetic fibres accelerate the heart and dilate the coronary arteries when stimulated, whereas parasympathetic (vagal) fibres slow the heart and cause constriction of coronary arteries.