Archive

Archive for the ‘Uncategorized’ Category

2014 in review

December 31, 2014 Leave a comment

The WordPress.com stats helper monkeys prepared a 2014 annual report for this blog.

Here’s an excerpt:

The concert hall at the Sydney Opera House holds 2,700 people. This blog was viewed about 10,000 times in 2014. If it were a concert at Sydney Opera House, it would take about 4 sold-out performances for that many people to see it.

Click here to see the complete report.

Categories: Uncategorized

2013 in Review

December 31, 2013 Leave a comment

The WordPress.com stats helper monkeys prepared a 2013 annual report for my blog.

Here’s an excerpt:

A New York City subway train holds 1,200 people. This blog was viewed about 7,600 times in 2013. If it were a NYC subway train, it would take about 6 trips to carry that many people.

Click here to see the complete report.

2012 was pretty awesome year for this blog – 2012 in review

December 31, 2012 Leave a comment

The WordPress.com stats helper monkeys prepared a 2012 annual report for this blog.

Here’s an excerpt:

600 people reached the top of Mt. Everest in 2012. This blog got about 11,000 views in 2012. If every person who reached the top of Mt. Everest viewed this blog, it would have taken 18 years to get that many views.

Click here to see the complete report.

Math ability requires crosstalk in the brain

September 9, 2012 Leave a comment

 

Examples of the simple numerical and arithmetic tasks used in the study. Participants were asked to judge whether the numerical operation was correct or not. Credit: Center for Vital Longevity, University of Texas at Dallas. (up)

A new study by researchers at UT Dallas’ Center for Vital Longevity, Duke University, and the University of Michigan has found that the strength of communication between the left and right hemispheres of the brain predicts performance on basic arithmetic problems. The findings shed light on the neural basis of human math abilities and suggest a possible route to aiding those who suffer from dyscalculia— an inability to understand and manipulate numbers.

It has been known for some time that the parietal cortex, the top/middle region of the brain, plays a central role in so-called numerical cognition—our ability to process numerical information. Previous brain imaging studies have shown that the right parietal region is primarily involved in basic quantity processing (like gauging relative amounts of fruit in baskets), while the left parietal region is involved in more precise numerical operations like addition and subtraction. What has not been known is whether the two hemispheres can work together to improve math performance. The new study demonstrates that they can. The findings were recently published online in Cerebral Cortex.

In the study, conducted in Dallas and led by Dr. Joonkoo Park, now a postdoctoral fellow at Duke University, researchers used functional magnetic resonance imaging, or fMRI, to measure the brain activity of 27 healthy young adults while they performed simple numerical and arithmetic tasks. In one task, participants were asked to judge whether two groups of shapes contained the same or different numbers of items. In two other tasks, participants were asked to solve simple addition and subtraction problems.

Consistent with previous studies, the researchers found that the basic number-matching task activated the right parietal cortex, while the addition and subtraction tasks produced additional activity in the left parietal cortex. But they also found something new: During the arithmetic tasks, communication between the left and right hemispheres increased significantly compared with the number-matching task. Moreover, people who exhibited the strongest connection between hemispheres were the fastest at solving the subtraction problems.

“Our results suggest that subtraction performance is optimal when there is high coherence in the neural activity in these two brain regions. Two brain areas working together rather than either region alone appears to be key” said co-author Dr. Denise C. Park, co-director of the UT Dallas Center for Vital Longevity and Distinguished University Chair in the School of Behavioral and Brain Sciences. Park (no relation to the lead author) helped direct the study along with Dr. Thad Polk, professor of psychology at the University of Michigan.

Lead author Dr. Joonkoo Park points out that the findings suggest that disrupted or inefficient neural communication between the hemispheres may contribute to the impaired math abilities seen in dyscalculia, the numerical equivalent of dyslexia. “If such a causal link exists,” he said, “one very interesting avenue of research would be to develop training tasks to enhance parietal connectivity and to test whether they improve numerical competence.”

Such a training program might help develop math ability in children and could also help older adults whose arithmetic skills begin to falter as a normal part of age-related cognitive decline.

 

Reference:

The above story is reprinted from materials provided by University of Texas at Dallas, via MedicalXpress.

Journal: Cerebral Cortex

 

2011 in review


The WordPress.com stats helper monkeys prepared a 2011 annual report for this blog. Here’s an excerpt:

A San Francisco cable car holds 60 people. This blog was viewed about 3,300 times in 2011. If it were a cable car, it would take about 55 trips to carry that many people.

Click here to see the complete report.

Blog’s author’s Contributor Profile – Associated Content

Categories: Uncategorized