Posts Tagged ‘PTSD’

Memories May Not Live in Neurons’ Synapses

The finding could mean recollections are more enduring than expected and disrupt plans for PTSD treatments.

Do memories live outside neurons or within them? ISTOCKPHOTO

As intangible as they may seem, memories have a firm biological basis. According to textbook neuroscience, they form when neighboring brain cells send chemical communications across the synapses, or junctions, that connect them. Each time a memory is recalled, the connection is reactivated and strengthened. The idea that synapses store memories has dominated neuroscience for more than a century, but a new study by scientists at the University of California, Los Angeles, may fundamentally upend it: instead memories may reside inside brain cells. If supported, the work could have major implications for the treatment of post-traumatic stress disorder (PTSD), a condition marked by painfully vivid and intrusive memories.

More than a decade ago scientists began investigating the drug propranolol for the treatment of PTSD. Propranolol was thought to prevent memories from forming by blocking production of proteins required for long-term storage. Unfortunately, the research quickly hit a snag. Unless administered immediately after the traumatic event, the treatment was ineffective. Lately researchers have been crafting a work-around: evidence suggests that when someone recalls a memory, the reactivated connection is not only strengthened but becomes temporarily susceptible to change, a process called memory reconsolidation. Administering propranolol (and perhaps also therapy, electrical stimulation and certain other drugs) during this window can enable scientists to block reconsolidation, wiping out the synapse on the spot.

The possibility of purging recollections caught the eye of David Glanzman, a neurobiologist at U.C.L.A., who set out to study the process in Aplysia, a sluglike mollusk commonly used in neuroscience research. Glanzman and his team zapped Aplysia with mild electric shocks, creating a memory of the event expressed as new synapses in the brain. The scientists then transferred neurons from the mollusk into a petri dish and chemically triggered the memory of the shocks in them, quickly followed by a dose of propranolol.

Initially the drug appeared to confirm earlier research by wiping out the synaptic connection. But when cells were exposed to a reminder of the shocks, the memory came back at full strength within 48 hours. “It was totally reinstated,” Glanzman says. “That implies to me that the memory wasn’t stored in the synapse.” The results were recently published in the online open-access journal eLife.

If memory is not located in the synapse, then where is it? When the neuroscientists took a closer look at the brain cells, they found that even when the synapse was erased, molecular and chemical changes persisted after the initial firing within the cell itself. The engram, or memory trace, could be preserved by these permanent changes. Alternatively, it could be encoded in modifications to the cell’s DNA that alter how particular genes are expressed. Glanzman and others favor this reasoning.

Eric R. Kandel, a neuroscientist at Columbia University and recipient of the 2000 Nobel Prize in Physiology or Medicine for his work on memory, cautions that the study’s results were observed in the first 48 hours after treatment, a time when consolidation is still sensitive.

Though preliminary, the results suggest that for people with PTSD, pill popping will most likely not eliminate painful memories. “If you had asked me two years ago if you could treat PTSD with medication blockade, I would have said yes, but now I don’t think so,” Glanzman says. On the bright side, he adds, the idea that memories persist deep within brain cells offers new hope for another disorder tied to memory: Alzheimer’s.

The above story is reprinted from materials provided by Scientific American.

Neural Networks Forget Information Quickly

December 16, 2012 Leave a comment

Researchers have figured out the speed that neural networks in the cerebral cortex can delete sensory information is a bit of information per active neuron per second. The activity patterns of the neural network models are deleted nearly as soon as they are passed on from sensory neurons.

The scientists used neural network models based on real neuronal properties for the first time for these calculations. Neuronal spike properties were figured into the models which also helped show that the cerebral cortex processes were extremely chaotic.

Neural networks and this type of research in general are all helping researchers better understand learning and memory processes. With better knowledge about learning and memory, researchers can work toward treatments for Alzheimer’s disease, dementia, learning disabilities, PTSD related memory loss and many other problems.

More details are provided in the release below. Read more…

Researchers Partially Control a Memory

Scripps Research Institute Team Wrests Partial Control of a Memory

The work advances understanding of how memories form and offers new insight into disorders such as schizophrenia and post traumatic stress disorder.

Scripps Research Institute scientists and their colleagues have successfully harnessed neurons in mouse brains, allowing them to at least partially control a specific memory. Though just an initial step, the researchers hope such work will eventually lead to better understanding of how memories form in the brain, and possibly even to ways to weaken harmful thoughts for those with conditions such as schizophrenia and post traumatic stress disorder.

The results are reported in the March 23, 2012 issue of the journal Science.

Researchers have known for decades that stimulating various regions of the brain can trigger behaviors and even memories. But understanding the way these brain functions develop and occur normally—effectively how we become who we are—has been a much more complex goal.

“The question we’re ultimately interested in is: How does the activity of the brain represent the world?” said Scripps Research neuroscientist Mark Mayford, who led the new study. “Understanding all this will help us understand what goes wrong in situations where you have inappropriate perceptions. It can also tell us where the brain changes with learning.”

On-Off Switches and a Hybrid Memory

As a first step toward that end, the team set out to manipulate specific memories by inserting two genes into mice. One gene produces receptors that researchers can chemically trigger to activate a neuron. They tied this gene to a natural gene that turns on only in active neurons, such as those involved in a particular memory as it forms, or as the memory is recalled. In other words, this technique allows the researchers to install on-off switches on only the neurons involved in the formation of specific memories.

For the study’s main experiment, the team triggered the “on” switch in neurons active as mice were learning about a new environment, Box A, with distinct colors, smells and textures.

Next the team placed the mice in a second distinct environment—Box B—after giving them the chemical that would turn on the neurons associated with the memory for Box A. The researchers found the mice behaved as if they were forming a sort of hybrid memory that was part Box A and part Box B. The chemical switch needed to be turned on while the mice were in Box B for them to demonstrate signs of recognition. Alone neither being in Box B nor the chemical switch was effective in producing memory recall.

“We know from studies in both animals and humans that memories are not formed in isolation but are built up over years incorporating previously learned information,” Mayford said. “This study suggests that one way the brain performs this feat is to use the activity pattern of nerve cells from old memories and merge this with the activity produced during a new learning session.”

Future Manipulation of the Past

The team is now making progress toward more precise control that will allow the scientists to turn one memory on and off at will so effectively that a mouse will in fact perceive itself to be in Box A when it’s in Box B.

Once the processes are better understood, Mayford has ideas about how researchers might eventually target the perception process through drug treatment to deal with certain mental diseases such as schizophrenia and post traumatic stress disorder. With such problems, patients’ brains are producing false perceptions or disabling fears. But drug treatments might target the neurons involved when a patient thinks about such fear, to turn off the neurons involved and interfere with the disruptive thought patterns.

Notes about this memory research article

In addition to Mayford, other authors of the paper, “Generation of a Synthetic Memory Trace,” are Aleena Garner, Sang Youl Hwang, and Karsten Baumgaertel from Scripps Research, David Rowland and Cliff Kentros from the University of Oregon, Eugene, and Bryan Roth from the University of North Carolina (UNC), Chapel Hill.

This work is supported by the National Institute of Mental Health, the National Institute on Drug Abuse, the California Institute for Regenerative Medicine, and the Michael Hooker Distinguished Chair in Pharmacology at UNC.


Source: The Scripps Research Institute press release

Original Research: Abstract for “Generation of a Synthetic Memory Trace” by Aleena R. Garner, David C. Rowland, Sang Youl Hwang, Karsten Baumgaertel, Bryan L. Roth, Cliff Kentros & Mark Mayford in Science