Archive

Posts Tagged ‘Psychology’

Why the Thrill is Gone: Scientists Identify Potential Target for Treating Major Symptom of Depression

December 16, 2012 1 comment

Stanford University School of Medicine scientists have laid bare a novel molecular mechanism responsible for the most important symptom of major depression: anhedonia, the loss of the ability to experience pleasure. While their study was conducted in mice, the brain circuit involved in this newly elucidated pathway is largely identical between rodents and humans, upping the odds that the findings point toward new therapies for depression and other disorders.

Additionally, opinion leaders hailed the study’s inventive methodology, saying it may offer a much sounder approach to testing new antidepressants than the methods now routinely used by drug developers.

While as many as one in six Americans is likely to suffer a major depression in their lifetimes, current medications either are inadequate or eventually stop working in as many as 50 percent of those for whom they’re prescribed.

“This may be because all current medications for depression work via the same mechanisms,” said Robert Malenka, MD, PhD, the Nancy Friend Pritzker Professor in Psychiatry and Behavioral Sciences. “They increase levels of one or another of two small molecules that some nerve cells in the brain use to signal one another. To get better treatments, there’s a great need to understand in greater detail the brain biology that underlies depression’s symptoms.” The study’s first author is Byung Kook Lim, PhD, a postdoctoral scholar in Malenka’s laboratory.

Malenka is senior author of the new study, published July 12 in Nature, which reveals a novel drug target by showing how a hormone known to affect appetite turns off the brain’s ability to experience pleasure when an animal is stressed. This hormone, melanocortin, signals to an ancient and almost universal apparatus deep in the brain called the reward circuit, which has evolved to guide animals toward resources, behaviors and environments — such as food, sex and warmth — that enhance their prospects for survival.

Scientists found that both chronic stress and the direct administration of melanocortin diminished the signaling strength of some synapses in the nucleus accumbens that contain receptors for melanocortin. The nucleus accumbens is labeled in this drawing of a human brain cross section. (up)

“This is the first study to suggest that we should look at the role of melanocortin in depression-related syndromes,” said Eric Nestler, MD, PhD, professor and chair of neuroscience and director of the Friedman Brain Institute at Mount Sinai School of Medicine in New York. Nestler was not involved in the study but is familiar with its contents. Read more…

Advertisements

The Impossible Staircase in Our Heads: How We Visualize the World Around Us

March 28, 2012 1 comment

Our interpretation of the world around us may have more in common with the impossible staircase illusion than it does the real world, according to research published today in the open access journal PLoS ONE.

A ‘Penrose stairs’ optical illusion, or impossible staircase. Image adapted from public domain image shared by Sakurambo on Wikimedia

The study, which was funded by the Wellcome Trust, suggests that we do not hold a three-dimensional representation of our surroundings in our heads as was previously thought.

Artists, such as Escher, have often exploited the paradoxes that emerge when a 3D scene is depicted by means of a flat, two-dimensional picture. In Escher’s famous picture ‘Waterfall’, for example, it is impossible to tell whether the start of the waterfall is above or below its base.

Paradoxes like this can be generated in a drawing, but it is not possible to create such a 3D structure. The illusion is possible because drawings of 3D scenes are inherently ambiguous, so there is no one-to-one relationship between the picture and 3D locations in space.

Most theories of 3D vision and how we represent space in our visual system assume that we generate a one-to-one 3D model of space in our brains, where each point in real space maps to a unique point in our model. However, there is an ongoing debate about whether this is really the case.

To test this idea, researchers at the University of Reading placed participants wearing a virtual reality headset in a virtual room in which they had to judge which of two objects was the nearest. On some occasions, the size of the room was increased four-fold – previous research by the team showed that participants fail to notice this expansion.

In this new study, the researchers found that people’s judgement of the relative depth of objects depended on the order in which the objects were compared. Although the results are readily explained in relation to the expansion of the room, the participants had no idea that the room changed at any stage during the experiment. It is the properties of this stable perception that the experiment tested.

Dr Andrew Glennerster from the University of Reading, who led the study, explains: “In the impossible staircase illusion, you cannot tell whether the back corner is higher or lower than the front one as it depends which route you take to get there. The same is true, we find, in our task. This means that our own internal representations of space must be rather like Escher’s paradoxes, with no one-to-one relationship to real space.”

“Even when the size of the room increases four-fold, people think they are in a stable room throughout the experiment. Their interpretation of the room does not update itself when the room itself changes.

“Does it make sense for their representation of the room to have 3D coordinates, as a proper staircase would? No – there is no way to write down the coordinates of the objects that could explain the judgements people made. Visual space – the internal representation – is much more like the paradoxical staircase than a physically realisable model.”

Source:

Wellcome Trust press release
Image Source: NeuroscienceNews.com image adapted from public domain image with credit to Sakurambo on Wikipedia.
Original Research: Research article “A demonstration of ‘broken’ visual space” by Svarverud E et al. to appear in PLoS ONE 2012